High quality monocrystalline ZnO films grown at low temperature by Atomic Layer Deposition

Ł. Wachnicki¹, A. Dużyńska¹, J.Z. Domagała¹, B.S. Witkowski¹, K. Kopalko¹, M. Guziewicz², T.A. Krajewski¹, G. Łuka¹, M. Godlewski^{1,3} and E. Guziewicz¹

¹Polish Academy of Sciences, Institute of Physics, al. Lotników 32/46, Warszawa 02-668, Poland
²Institute of Electron Technology (ITE), al. Lotników 32/46, Warsaw 02-668, Poland
³Cardinal Stefan Wyszynski University, College of Science, Department of Mathematics and Natural Sciences, Warszawa, Poland

Atomic Layer Deposition

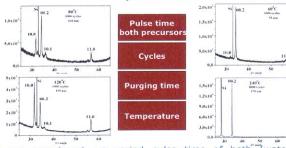
We used the ALD (Atomic Layer Deposition) technique to grow monocrystalline ZnO. The characteristic features of this method are:

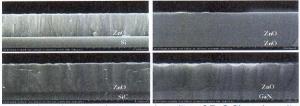
✓ possibility of use very reactive precursors like diethylzinc or dimethylzinc

 ✓ sequential procedure based on the reaction of synthesis, single exchange and double exchange;
 ✓ self limiting process.

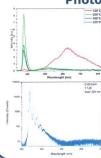
Example of double exchange chemical reaction: $C_2H_5 - Zn - C_2H_5 + H_2O \rightarrow ZnO + 2C_2H_6$

Savannah 100 DEZn and deionized water precursors

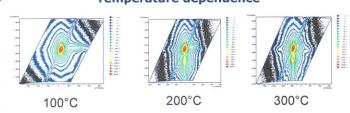




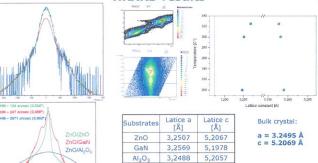
Optimization


In our experiment we varied pulse time of both (water and diethylzinc) precursors, purging time, number of cycles and temperature. We observed changes in crystallographic orientation.

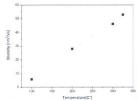
Cross-section images


SEM studies show good structural quality of ZnO films deposited on different substrates. Best monocrystalline quality was obtained for zinc oxide and gallium nitride substrates.

Photoluminescence characterization


PL studies show that strong excitonic emission is observed even at room temperature for different growth temperature. The main features of PL spectra: FWHM of band-edge PL is equal to 4.4meV, the high of energy peak is located at 3.33 eV and corresponds to a deep acceptor or free-to-bound transition. The LTPL peak located at 3.36 eV might be related to neutral donor bound exciton recombination. The logarithmic scale enables observing a bound exciton, a free exciton and phonon repetitions, which is a fingerprint of a high optical quality of obtained samples.

Temperature dependence


We obtained monocrystalline zinc oxide on gallium nitride substrates at 200°C temperature. Images show symmetrical 00.6 reflection.

HRXRD results

High-resolution X-ray diffraction spectra shows that ZnO films are monocrystalline, with a FWHM of their associated rocking curves of approximately 247 arcsec for heteroepitaxial growth and 124 arcsec for homoepitaxial growth.

Electrical parameters

Temperature	n [cm-3]	μ [cm2/Vs]
100	4,66*1018	5,74
200	2,31*1019	27,85
300	4,16*1018	46,05
325	2,94*1018	52,70

Hall measurements showed n-type behavior with a carrier mobility of 52,7 cm²/Vs for glass substrate and 189 cm²/Vs for gallium nitride substrate

Conclusion

We show how ZnO growth depends on process parameters and illustrate difference in quality of zinc oxide layers grown on various substrates like a gallium nitride, zinc oxide, silicon and silicon carbide. High Resolution X-ray diffraction spectra showed that FWHM of the symmetrical 00.2 reflection equals to 0.07° for monocrystalline growth on GaN substrates. In low temperature photoluminescence we observed a sharp excitonic line in band-edge region with FWHM of 4 meV. The defect-related luminescence was not present in our samples.

Acknowledgements

The research was partially supported by: European Union within European Regional Development Fund, through grant Innovative Economy (POIG.01.01.02-00-008/08) and Polish Ministry of Science and Higher Education - project no. 0663/B/T02/2008/35.