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Abstract
This work deals with misfit angles, which are observable in ferroelastic phase transitions. In
the literature the misfit angles were calculated for six different ferroelastic phase transitions,
where there is only one possible misfit angle. In this work the method for obtaining all misfit
angles (for the cases where there is more than one possible) is introduced. Also the expressions
for all possible misfit angles for each ferroelastic species are given.

PACS numbers: 62.20.Dc

1. Introduction

In a ferroelastic structure, several ferroelastic domain states can be formed [1]. These states
have the same crystal structure and differ only in the orientation with respect to the coordinate
system of the paraelastic phase. Since all domain states are energetically equivalent, they can
coexist in the same crystal. The ferroelastic domains and domain walls can be well observed
in a polarized-light microscope [2]. When only a single domain is formed in the ferroelastic
structure, its single domain state has a prominent crystallographic orientation, and is referred
to as the ideal domain state. In a multi-domain structure the orientations of the domain states
differ from the orientations of the corresponding ideal domain states.

The domain walls between two ferroelastic domains that satisfy the conditions of the strain
compatibility are then referred to as permissible domain walls. These domain walls must contain
all directions for which the change in length of any infinitesimal vector of the prototype, due to
spontaneous strain, is equal in the two adjacent domains [1]. If the existence of a permissible
domain wall between two domains is possible, then there are always two planes in which the
permissible domain walls can be formed. Furthermore, these two planes are always perpendicular
to each other [1]. If the permissible domain walls cannot exist, then the two domain states will
join only when external stress is applied. The boundaries between the two domain states are then
not well-defined planes, often irregular, curved or diffuse, with internal stresses and dislocations.
In this work we will consider only the cases when a permissible domain wall can be formed.

To form a domain wall between two ferroelastic domains a certain rotation of the correspond-
ing ideal domain states of the adjacent domains is necessary [3, 4]. The aim of this work is to
calculate all possible angles, the so-called misfit angles, at which the ideal domain states could
be rotated in order to form the permissible domain wall. The magnitude of these angles depends
on the spontaneous strain and on the relation between the two domain states. In Ref. [4] the
angles have been calculated for six different phase transitions. In this work, these calculations
are performed for all possible ferroelastic phase transitions.
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2. Spontaneous strain tensor

The spontaneous strain tensor is defined in such a way that the volume of the prototype does
not change after the spontaneous strain, although in reality the volume changes due to thermal
expansion. The spontaneous strain tensor accounts only for the change in the crystal structure.
This condition is expressed in the following formula [5]:

ε11 + ε22 + ε33 = 0, (1)

where εii are the main diagonal components of the spontaneous strain tensor.
As is shown in Ref. [6] the form of the spontaneous strain tensor depends only on the groups of

symmetry P of the prototypic phase and E of the ferroelastic phase, respectively. Then we define
the F -operations as the operations that are in P but not in E. The F -operations represent the
symmetries that were lost in the phase transition. Any domain state of the ferroelastic structure
has all the symmetries of the group of symmetry E. The F -operations transform one domain
state into the other domain states. Tables for the forms of spontaneous strain tensors for all
domain states for each ferroelastic phase transition can be found in Ref. [7].

Generally, there is more than one operation that transforms one certain domain state S1 into
another domain state S2 (the quantities for different domain states are denoted by superscripts
behind the symbols of the quantities). If one of the F -operations is a mirror plane or a twofold
axis, then this plane, or the plane perpendicular to the twofold axis is going to be the W
permissible domain wall, because it satisfies all the conditions. The W ′ wall is going to be
perpendicular to the W wall. The exact orientation of the W ′ wall depends on the exact values
of the components of the spontaneous strain tensor [1].

While calculating the misfit angle of the ideal domain states the spontaneous strain difference
tensor δij is introduced. It is defined as the difference of the spontaneous strain tensors of two
different domain states

δ = ε1 − ε2. (2)

From (1) and (2) we can conclude that

δ11 + δ22 + δ33 = 0. (3)

The spontaneous strain tensor possesses the point inversion as a symmetry element and
therefore the spontaneous strain tensors have the same form for all crystal classes belonging to
the same Laue’s group, since the classes differ only in the point inversion symmetry. From this
one can conclude that it is not necessary to perform calculations for phase transitions between
all possible crystal classes, but only for the 11 Laue’s groups. Therefore, we need to perform
calculations for only one of the crystal species corresponding to this phase transition and the
result is valid for all other species that exhibit the same phase transition. For example, for
the phase transition from Cubic 1 to Tetragonal 1 we have three possible ferroelastic species:
432F422, 4̄3mF 4̄2m,m3mF4/mmm. If we take for example the species with the highest sym-
metry, which is the m3mF4/mmm transition, the calculations would be the same for the other
two species.

3. Calculation of the misfit angle

The misfit angle ϕ is the whole angle that the two domains have to rotate at in order to
join in a permissible domain wall (see Fig. 1). Let ∆ϕ1, respectively ∆ϕ2 be the oriented angle
(counterclockwise) at which the first domain state, respectively the second domain state rotates.
The angle ϕ is then given as

ϕ = ∆ϕ2 −∆ϕ1. (4)

3.1. Geometrical approach

Let us show an example of calculating the misfit angle ϕ using geometrical methods. Let us
consider the case of the species 4/mmmFmmm.
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Fig. 1. The misfit angle in the case of 4/mmmFmmm (the magnitude of the strain is much
smaller in reality).

In Ref. [7] we can find the form of the spontaneous strain tensor for the first domain state

ε1 =

 −a 0 0
0 a 0
0 0 0

 .
In the prototypic structure, there is a fourfold axis of symmetry in the direction of the z axis.
In the ferroelastic structure there is only a twofold axis of symmetry in the direction of the z
axis. Therefore one of the F -operations is for example rotation about the z axis at the angle
90◦. Applying this operation on ε1, we get the form of the spontaneous strain tensor for the
second domain state

ε2 =

 a 0 0
0 −a 0
0 0 0

 .
The point with the coordinates in the prototypic structure [x, y, z] is displaced to the point

with the coordinates [x′, y′, z′] in the ferroelastic structure. These coordinates in both domain
states can be expressed in terms of x, y, z and the spontaneous strain tensors

DS1 : x′ = x(1− a), y′ = y(1 + a), z′ = z, (5)

DS2 : x′ = x(1 + a), y′ = y(1− a), z′ = z. (6)

As we can see from this result, in the direction of the z axis there is no mechanical strain.
Therefore we will limit our considerations to the plane z = 0. For our calculation it is best to
consider a square lying in the plane that has its centre in the origin, and the sides parallel to
the axes x, y, respectively. This square will be deformed into a rectangle. The whole situation
is shown in Fig. 1. The centre of the square has coordinates [0,0,0] and the coordinates of the
upper right vertex are [1,1,0]. From the calculations above we get the coordinates of the point
in the first domain state [1− a, 1 + a, 0] and in the second domain state [1 + a, 1− a, 0]. From
the figure, it follows that

ϕ = 90◦ − 2α. (7)

From this equation we get

tan(ϕ/2) = tan(45◦ − α) =
1− tanα
1 + tanα

= a. (8)

Since the value of a is very small in reality, we can use the approximation tan x ≈ x, therefore
the result is

ϕ = 2a. (9)
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The geometrical approach can hardly be generalized and can lead to many difficulties, e.g.
in the case of Cubic → Trigonal transition, when the trigonal axis is parallel to [111]. In fact
the example shown above is probably the simplest case of a phase transition. Therefore we need
to find a more general way of calculating the misfit angle. In the next section the algebraical
approach is discussed in detail.

3.2. Algebraical approach

Let us consider the spontaneous strain tensor ε1 for the first domain state and ε2 for the
second domain state. Now we will assume that there can exist a permissible domain wall between
these two domain states. Let us consider an arbitrary vector x that lies in the domain wall.
The elongation of this vector after the spontaneous strain in the individual domain states is (in
Einstein’s notation)

DS1 : ∆x1 =
ε1
ijxixj

|x|
, (10)

DS2 : ∆x2 =
ε2
ijxixj

|x|
. (11)

Since a permissible domain wall should be formed, it must hold

∆x1 = ∆x2. (12)

The equation of the permissible wall is then

(ε1
ij − ε2

ij)xixj = 0 (13)

and after substituting from (2) we get

δijxixj = 0. (14)

Equation (14) is the equation of the surface of a cone with the apex lying in the origin [1]. This
solution, however, is not physically acceptable, because the domain wall must be independent
of the choice of the origin. Therefore this solution must be rejected unless the cone surface
degenerates into a plane. This condition is expressed as∣∣∣∣∣∣∣

δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

∣∣∣∣∣∣∣ = 0. (15)

For very small deformations, which is our case, the misfit angle of the domain states is given
as the eigenvalue of the spontaneous strain difference tensor.

The eigenvalues λ of the spontaneous strain difference tensor δ can be found as solutions of
the secular equation

λ3 − J1λ
2 + J2λ− J3 = 0, (16)

where J1 = δ11 + δ22 + δ33, J2 =

∣∣∣∣∣ δ11 δ12

δ21 δ22

∣∣∣∣∣ +

∣∣∣∣∣ δ22 δ23

δ32 δ33

∣∣∣∣∣ +

∣∣∣∣∣ δ11 δ13

δ31 δ33

∣∣∣∣∣ ,
J3 =

∣∣∣∣∣∣∣
δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

∣∣∣∣∣∣∣ . In our case, the equation will be simplified, since J1 = 0 according

to (3) and J3 = 0 according to (15). Equation (16) then takes on the following form:

λ3 + J2λ = 0. (17)

Thus, the desired eigenvalues are

λ1 = 0, λ2,3 = ±
√
−J2. (18)
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Therefore, the non-zero misfit angle is given as

ϕ = ±
√
−J2. (19)

3.3. Calculating all possible angles for a phase transition

Using the above method, all possible misfit angles for all ferroelastic phase transitions were
calculated. For each ferroelastic phase transition one must take all pairs of domain states. For
each domain pair, it is necessary to calculate the spontaneous strain difference tensor, check if
the determinant was zero, and if so, then calculate the misfit angle using the formula (19). In
the list of results, all species belonging to the phase transition, the spontaneous strain for the
first domain state and all possible misfit angles are listed for each phase transition.

As an example, let us consider the phase transition Tetragonal 2 → Triclinic. The sponta-
neous strain tensors for the four possible domain states are as follows:

ε1 =

 −a b c
b a d
c d 0

 , ε2 =

 a −b −d
−b −a c
−d c 0

 ,

ε3 =

 −a b −c
b a −d
−c −d 0

 , ε4 =

 a −b d
−b −a −c
d −c 0

 .
Now let us evaluate the spontaneous strain difference tensor for all possible pairs

δ1,2 =

 −2a 2b c+ d
2b 2a d− c

c+ d d− c 0

 , δ1,3 =

 0 0 2c
0 0 2d

2c 2d 0

 ,

δ1,4 =

 −2a 2b c− d
2b 2a c+ d

c− d c+ d 0

 , δ2,3 =

 2a −2b c− d
−2b −2a c+ d
c− d c+ d 0

 ,

δ2,4 =

 0 0 −2d
0 0 2c

−2d 2c 0

 , δ3,4 =

 −2a 2b −c− d
2b 2a c− d

−c− d c− d 0

 .
Only the cases of domain pairs S1, S3 and S2, S4 yield a zero determinant. For these pairs

we get the same result and the only possible angle for this type of phase transition

ϕ = ±2
√
c2 + d2.

4. List of results

Cubic 1 → Tetragonal 1
432F422, 4̄3mF 4̄2m,m3mF4/mmm
x, y, z||cubic axes; in S1, the tetragonal axis (ferr.)||x

ε1 =

 −2b 0 0
0 b 0
0 0 b

 , ϕ = ±3|b|.
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Cubic → Trigonal
23F3,m3F 3̄, 432F32, 4̄3mF3m,m3mF 3̄m
x, y, z||cubic axes; in S1, the trigonal axis (ferr.)||[111]

ε1 =

 0 d d
d 0 d
d d 0

 , ϕ = ±2
√

2|d|.

Cubic 1 → Orthorhombic (P )
432F222, 4̄3mF222,m3mFmmm
x, y, z||cubic axes

ε1 =

 a 0 0
0 b 0
0 0 c

 , ϕ = ±|b− c|,
ϕ = ±|a− c|,
ϕ = ±|a− b|.

Cubic 1 → Orthorhombic (S)
432F222, 4̄3mF222,m3mFmmm
x, y, z||cubic axes; in S1, the orthorhombic axis (ferr.)||x

ε1 =

 −2b 0 0
0 b d
0 d b

 , ϕ = ±2|d|,
ϕ = ±

√
9b2 + 2d2.

Cubic 1 → Monoclinic (P )
432F2(p), 4̄3mF2,m3mF2/m(p)
x, y, z||cubic axes; in S1, 2 (ferr.)||x

ε1 =

 a 0 0
0 b d
0 d c

 ,
ϕ = ±2|d|,
ϕ = ±|b− c|,
ϕ = ±

√
b2 − 2bc+ c2 + 4d2,

ϕ = ±
√
a2 − 2ab+ b2 + 2d2,

ϕ = ±
√
a2 − 2ac+ c2 + 2d2.

Cubic 1 → Monoclinic (S)
432F2(s), 4̄3mFm,m3mF2/m(s)
x, y, z||cubic axes; in S1, the monoclinic axis||[011̄]

ε1 =

 −2b e e
e b d
e d b

 ,
ϕ = ±2

√
2|e|,

ϕ = ±2
√
d2 + e2,

ϕ = ±
√

9b2 + 2d2 + 6e2,

ϕ = ±
√

9b2 + 2d2 + 4de+ 2e2,

ϕ = ±
√

9b2 + 2d2 − 4de+ 2e2.

Cubic 1 → Triclinic
432F1, 4̄3mF1,m3mF 1̄
x, y, z||cubic axes

ε1 =

 a f e
f b d
e d c

 ,
ϕ = ±2

√
e2 + f2, ϕ = ±2

√
d2 + f2,

ϕ = ±2
√
d2 + e2, ϕ = ±

√
2|e− f |,

ϕ = ±
√

2|e+ f |, ϕ = ±
√

2|d− e|,
ϕ = ±

√
2|d+ e|, ϕ = ±

√
2|d− f |,

ϕ = ±
√

2|d+ f |.
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Cubic 2 → Orthorhombic
23F222,m3Fmmm
x, y, z||cubic axes

ε1 =

 a 0 0
0 b 0
0 0 c

 , no permissible domain walls.

Cubic 2 → Monoclinic
23F2,m3F2/m
x, y, z||cubic axes; in S1, 2 (ferr.)||x

ε1 =

 a 0 0
0 b d
0 d c

 , ϕ = ±2|d|.

Cubic 2 → Triclinic
23F1,m3F 1̄
x, y, z||cubic axes

ε1 =

 a f e
f b d
e d c

 , ϕ = ±2
√
e2 + f2,

ϕ = ±2
√
d2 + f2,

ϕ = ±2
√
d2 + e2.

Hexagonal 1 → Orthorhombic
622F22, 6mmFmm2, 6̄m2Fmm2, 6/mmmFmmm
z||6 or 6̄, x||2 or ⊥m; in S1, x||the orthorhombic axis (ferr.)

ε1 =

 −a 0 0
0 a 0
0 0 0

 , ϕ = ±
√

3|a|.

Hexagonal 1 → Monoclinic (P )
622F2, 6mmF2, 6̄m2Fm, 6/mmmF2/m
z||6 or 6̄, x||2 or ⊥m

ε1 =

 −a b 0
b a 0
0 0 0

 ,
ϕ = ±2|b|,
ϕ = ±

√
3
√
a2 + b2,

ϕ = ±|
√

3a+ b|,
ϕ = ±

√
3
√
a2 + b2,

ϕ = ±|
√

3a− b|.

Hexagonal 1 → Monoclinic (S)
622F2, 6mmF2, 6̄m2Fm, 6/mmmF2/m
z||6 or 6̄, y||2 or ⊥m; in S1, y||the monoclinic axis (ferr.)

ε1 =

 −a 0 c
0 a 0
c 0 0

 ,
ϕ = ±

√
3a2 + c2,

ϕ = ±
√

3
√
a2 + c2,

ϕ = ±2|c|,
ϕ = ±

√
3
√
a2 + c2,

ϕ = ±
√

3a2 + c2.
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Hexagonal 1 → Triclinic
622F1, 6mmF1, 6̄m2F1, 6/mmmF 1̄
z||6 or 6̄, x||2 or ⊥m; in S1, x||the hexagonal axis (ferr.)

ε1 =

 −a b c
b a d
c d 0

 ,

ϕ = ±2
√
b2 + c2,

ϕ = ±2
√
b2 + d2,

ϕ = ±2
√
c2 + d2,

ϕ = ±
√

3a2 + 2
√

3ab+ b2 + 3c2 + 2
√

3cd+ d2,

ϕ = ±
√

3a2 + 2
√

3ab+ b2 + c2 − 2
√

3cd+ 3d2,

ϕ = ±
√

3a2 − 2
√

3ab+ b2 + 3c2 − 2
√

3cd+ d2,

ϕ = ±
√

3a2 − 2
√

3ab+ b2 + c2 + 2
√

3cd+ 3d2.

Hexagonal 2 → Monoclinic
6F2, 6̄Fm, 6/mF2/m
z||6 or 6̄

ε1 =

 −a b 0
b a 0
0 0 0

 , ϕ = ±
√

3(a2 + b2).

Hexagonal 2 → Triclinic
6F1, 6̄F1, 6/mF 1̄
z||6 or 6̄, x||2 or ⊥m

ε1 =

 −a b c
b a d
c d 0

 , ϕ = ±2
√
c2 + d2.

Tetragonal 1 → Orthorhombic (P )
422F222, 4mmFmm2, 4̄2mF222, 4̄2mFmm2, 4/mmmFmmm
z||4 or 4̄, x||the orthorhombic axis (ferr.)

ε1 =

 −a 0 0
0 a 0
0 0 0

 , ϕ = ±2|a|.

Tetragonal 1 → Orthorhombic (S)
422F222, 4mmFmm2, 4̄2mF222, 4̄2mFmm2, 4/mmmFmmm
z||4 or 4̄, x||2 or ⊥m; x〈45◦〉 the orthorhombic axis (ferr.)

ε1 =

 0 a 0
a 0 0
0 0 0

 , ϕ = ±2|a|.

Tetragonal 1 → Monoclinic (P )
422F2, 4mmF2, 4̄2mF2, 4/mmm2/m
z||4 or 4̄, x||2 or ⊥m

ε1 =

 −a b 0
b a 0
0 0 0

 , ϕ = ±2|b|,
ϕ = ±2

√
a2 + b2,

ϕ = ±2|a|.
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Tetragonal 1 → Monoclinic (S)
422F2, 4mmF2, 4̄2mF2, 4/mmm2/m
z||4 or 4̄, y||2 or ⊥m; in S1, y||the monoclinic axis (ferr.)

ε1 =

 −a 0 b
0 a 0
b 0 0

 , ϕ = ±
√

2
√

2a2 + b2,
ϕ = ±2|b|.

Tetragonal 1 → Monoclinic (S)
422F2, 4mmF2, 4̄2mF2, 4/mmm2/m
z||4 or 4̄, x||2 or ⊥m; x〈45◦〉 the monoclinic axis (ferr.)

ε1 =

 0 a c
a 0 c
c c 0

 , ϕ = ±2
√
a2 + c2,

ϕ = ±2
√

2|c|.

Tetragonal 1 → Triclinic
422F1, 4mmF1, 4̄2mF1, 4/mmmF 1̄
z||4 or 4̄, x||2 or ⊥m

ε1 =

 −a b c
b a d
c d 0

 ,
ϕ = ±2

√
b2 + c2,

ϕ = ±2
√
b2 + d2,

ϕ = ±2
√
c2 + d2,

ϕ = ±
√

2
√

2a2 + c2 − 2cd+ d2,

ϕ = ±
√

2
√

2a2 + c2 + 2cd+ d2.

Tetragonal 2 → Monoclinic
4F2, 4̄F2, 4/mF2/m
z||4 or 4̄

ε1 =

 −a b 0
b a 0
0 0 0

 , ϕ = ±2
√
a2 + b2.

Tetragonal 2 → Triclinic
4F1, 4̄F1, 4/mF 1̄
z||4 or 4̄

ε1 =

 −a b c
b a d
c d 0

 , ϕ = ±2
√
c2 + d2.

Trigonal 1 → Monoclinic
32F2, 3mFm, 3̄mF2/m
z||3, y||2 or ⊥m; in S1, y|| the monoclinic axis (ferr.)

ε1 =

 −a 0 c
0 a 0
c 0 0

 , ϕ = ±
√

3(a2 + c2).
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Tetragonal 1 → Monocpage Trigonal 1 → Triclinic
32F1, 3mF1, 3̄mF 1̄
z||3, x||2 or x||2 or ⊥m

ε1 =

 −a b c
b a d
c d 0

 ,
ϕ = ±2

√
b2 + c2,

ϕ = ±
√

3a2 − 2
√

3ab+ b2 + (c+
√

3d)2,

ϕ = ±
√

3a2 + 2
√

3ab+ b2 + (c−
√

3d)2.

Trigonal 1 → Triclinic
32F1, 3mF1, 3̄mF 1̄
z||3, y||2 or ⊥m

ε1 =

 −a b c
b a d
c d 0

 ,
ϕ = ±2

√
b2 + d2,

ϕ = ±
√

3a2 − 2
√

3ab+ b2 + 3c2 − 2
√

3cd+ d2,

ϕ = ±
√

3a2 + 2
√

3ab+ b2 + 3c2 + 2
√

3cd+ d2.

Trigonal 2 → Triclinic
3F1, 3̄F 1̄
z||3

ε1 =

 −a b c
b a d
c d 0

, no permissible domain walls.

Orthorhombic → Monoclinic
222F2,mm2F2,mm2Fm,mmmF2/m
x, y, z||the orthorhombic axes; y|| the monoclinic axis (ferr.)

ε1 =

 0 0 b
0 0 0
b 0 0

 , ϕ = ±2|b|.

Orthorhombic → Triclinic
222F1,mm2F1,mmmF 1̄
x, y, z||the orthorhombic axes

ε1 =

 0 c b
c 0 a
b a 0

 , ϕ = ±2
√
b2 + c2,

ϕ = ±2
√
a2 + c2,

ϕ = ±2
√
a2 + b2.

Monoclinic → Triclinic
2F1,mF1, 2/mF 1̄
y||2 or ⊥m

ε1 =

 0 a 0
a 0 b
0 b 0

 , ϕ = ±2
√
a2 + b2.

5. Conclusion

The aim of this work was to calculate the misfit angles of domain states joining in a per-
missible planar domain wall, which satisfies all the conditions of mechanical compatibility. The
explicit formulae, giving the result as a function of the spontaneous strain tensor for the first
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domain state, have been derived for all 30 possible types of ferroelastic phase transitions, in
which the compatible domain wall can be formed. In the cases, where there are more than two
possible ferroelastic domain states, all different pairs of domain states have been investigated.
For six types of phase transitions the results correspond with the results obtained by Shuvalov et
al. [4]. For the remaining 24, the explicit formulae for the misfit angles have not been published
before.
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