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Abstract
Particle motion in the Jovian magnetodisc is simulated in a rigidly corotating frame at radial
distances from 50 to 150 Jovian radii. Results are compared with existing Pioneer and Voyager
data to determine the accuracy of the simulation model. Particle orbits are classified into three
distinct classes based on disjoint formations in phase space, and certain orbits are shown to
have chaotic properties. The simulation is used to determine specific energies required to escape
the magnetosphere through the neutral plane centered at the magnetic equator. The model
should help to explain the detailed features observed for different charged particle species and
energies within the Jovian magnetosphere, and will also provide a predictive and analytical
tool for dealing with Galileo observations.

PACS numbers: 94.30.Hn, 52.20.Dq

1. Introduction

Energetic charged particles play an important role in Jupiter’s magnetosphere. The Pioneer
10/11 and the Voyager 1/2 missions, during their separate encounters with Jupiter, made mea-
surements that allow for a derivation of the magnetic field surrounding the planet. Analysis
of the data has revealed that within the magnetosphere there exists an equatorially elongated
magnetic field that is stronger than the general dipole (c.f. Figs. 1.0, 1.1). This elongation can
be modeled by considering the presence of a thin disc of current flowing in the direction of the
azimuth, or magnetodisc, that extends radially from the planet along the magnetic equatorial
plane to at least 150 planetary radii (Rj).

It is well known that charged particles follow spiral orbits along dipole field lines, tending
to bounce back and forth between the two planetary poles. In Jupiter’s magnetic field, such
particles may become temporarily trapped in the magnetodisc, bouncing back and forth within
the magnetodisc until they escape to continue the gyrating in the dipolar region outside of the
disc. At low magnetic latitudes (i.e. close to the magnetic equatorial plane), the magnetodisc
causes great curvature in magnetic field lines. Few particles can negotiate these sharp magnetic
turns and maintain the magnetic moment, which is proportional to the magnetic flux enclosed
by the particle’s spiral radius (gyroradius). Since the magnitude of magnetic force varies roughly
as the inverse cube of radial distance from Jupiter, the gyroradii of energetic ions will increase
accordingly. In some cases, the gyroradii of such ions may exceed the curvature radius of mag-
netic field lines within the magnetodisc and cause the ions to undergo nonadiabatic motion.
This highly nonlinear motion, unpredictable within the magnetodisc, falls within the realm of
deterministic chaos. Particles that travel through such orbits are discussed in Sec. 4. Once
trapped inside the magnetodisc, a particle’s motion can be broken down into two components:
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a “bouncing” motion perpendicular to the magnetodisc, and a semicircular motion on the mag-
netodisc plane. The semicircular motion in the magnetodisc plane can cause the particle to drift
radially outward, to the extent that it travels outside the effective realm of the magnetosphere.
It is shown in Sec. 6 that the probability for such ions to escape is highly dependent on initial
injection energy.

All physical predictions are based on a computer code that will model particle motion in
Jupiter’s magnetosphere. This motion is determined by integrating the Lorentz force using
the best existing model for the Jovian magnetosphere. At a given energy, the code simulates
injection with an isotropic pitch angle distribution, and allows for isolation of different particles
and different points of injection.

The available data reveal that the velocity distributions of ions are not isotropic in phase-
space, a factor that is most likely due to the stretching effect of the magnetodisc on the magnetic
field. The validity of the computer experiment described herein is verified by garnering distribu-
tions that agree with the observed data. Section 5 shows that the distributions obtained through
this simulation are consistent with those detected by the Pioneer spacecraft.

The Galileo spacecraft, which will begin orbiting Jupiter in December 1995, carries several
instruments that will measure characteristics of Jupiter’s magnetosphere, including its magnetic
field, plasma, and energetic charged particle populations. The Energetic Particle Detector (EPD)
will provide information regarding the activity of high energy ions and electrons within the Jovian
magnetosphere. This simulation will be used as a tool to predict and explain observations made
by the spacecraft.

Because Jupiter’s magnetic axis is at an angle to its rotation axis, the magnetodisc tends to
flap up and down causing periodic fluctuations in data. Since this behavior is similar to that
expected to exist in pulsars, a detailed study of Jupiter’s magnetodisc may also provide insight
into issues of astrophysical interest.

2. Preliminaries

2.1. General definitions associated with charged particles in a magnetic field

The time rate of change of momentum for a particle with charge q and mass m in a magnetic
field B and electric field E is described by the experimentally determined Lorentz force, which
is (in the units of Gaussian CGS)

dp
dt

= qE(x, t) +
q

c
v(t)×B(x, t), (1)

where x is the particle’s position vector from a given reference point, v is the particle’s velocity,
and c is the speed of light (approximately 3 × 1010 cm/s). According to special relativity, the
momentum p is given by

p = γmv, (2)

where the Lorentz factor is

γ =

(
1− v2

c2

)− 1
2

. (3)

To clarify the nature of the force in Eq. (1), we derive an expression for the time rate of change
of kinetic energy W by taking the dot product of the velocity with both sides of Eq. (1) to show
that

dW
dt

= qv ·E. (4)

Equation (4) shows that, in the absence of an electric field (i.e. E = 0), kinetic energy is constant.
Put simply, a magnetic field cannot change the kinetic energy of a particle. Equation (1) can be
solved analytically to show that particles in a static uniform magnetic field, i.e. E = 0 and B =
constant, spiral (gyrate) along field lines. The previous description can be applied to a particle’s
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instantaneous position in the magnetosphere when the magnetic field varies with position but
can be assumed to be constant with time. Such particles have an instantaneous orbital frequency
(gyrofrequency) of

Ω ≡ qB

γmc
= gyrofrequency (5)

and orbital radius (gyroradius)
rg ≡

v⊥
Ω

= gyroradius, (6)

where v⊥ is the component of velocity that is perpendicular to the local magnetic field B.
Equation (5) allows us to define the period of one gyration as

τ =
2π
Ω

= gyroperiod. (7)

We also define a pitch angle α, which is the angle between the velocity vector v and the magnetic
field B at any point x, such that

α = tan−1(v⊥/v‖), (8)

where v‖ is the component of the particle’s velocity parallel to the direction of the local magnetic
field.

2.2. Adiabatic invariants

Equations (1–8) allow us to draw an important conclusion regarding the predictability of
particle motion in a known magnetic field. If the magnetic field varies slowly over space, i.e.

rg|∇B|
B

� 1 (9)

and slowly over time, i.e.
τ |∂B/∂t|

B
� 1, (10)

then the ratio of perpendicular component of kinetic energy, W⊥, to the magnitude of the
magnetic field, B, is approximately invariant. This is called the first adiabatic invariant, or
magnetic moment, and is expressed as follows:

µ =
W⊥
B

=
1
2mv

2
⊥

B
=

1
2mv

2 sin2 α

B
. (11)

For Jupiter, conditions (9) and (10) are true at high magnetic latitudes where the magnetic field
is well approximated by that of a magnetic dipole, and the first adiabatic invariant (11) is a
constant of the motion.

Consider a system in which there is no electric field E parallel to the time-independent
magnetic field. Then a particle’s kinetic energy remains constant, and can be expressed as

W =
1
2
m(v2

⊥ + v2
‖) =

1
2
mv2
‖ + µB = const. (12)

In a field where the first adiabatic invariant is conserved, Eq. (11) shows that, as the magnetic
field strength increases (e.g. as a particle following a dipole field line gets closer to a pole), the
pitch angle must also increase. At a given “mirror point” (where the pitch angle increases to 90
degrees) v‖ decreases, goes through zero and changes signs. For certain B fields that satisfy (9)
and (10), e.g., those of dipolar forms, a charged particle oscillates periodically between two such
mirror points, and it is possible to define a second conserved quantity

J =
∮
p‖ds = 2

√
2m

∫ m2

m1

√
W − µB(s)ds
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= 2
√

2mµ
∫ m2

m1

√
Bm −B(s)ds, (13)

where p‖ denotes momentum parallel to the magnetic field, s describes distance traveled along
the field line, m1 and m2 are mirror points, and Bm is the magnitude of the magnetic field
at either mirror point. Equation (13) defines the second adiabatic invariant of motion, and is
constant in a field satisfying (9) and (10).

The motion of a particle gyrating in a field in which the first and second adiabatic invariants
are conserved is easily predictable if the magnetic field strength is known. Such motion can be
expected for charged particles in the dipolar region (well above or below the magnetodisc) of
the Jovian field. However, as particles move into the current disc, the radial component of the
magnetic field changes direction, and conditions (9) and (10) are not satisfied. In this region,
particles undergo nonadiabatic motion; the highly nonlinear dynamics of nonadiabatic motion
can produce observed anisotropies in the measured densities of high energy protons [1].

2.3. Guiding center theory

When conditions (9) and (10) are satisfied, a charged particle’s motion consists of a velocity
component along B plus a slow drift velocity perpendicular to B. Using (1) and averaging
particle motion over a gyroperiod yields the following expression for momentum [2]:

m
d2R(t)

dt2
= qE(R(t), t) +

q

c

dR(t)
dt

×B(R(t), t)− µ∇B(R(t)), (14)

where R(t) represents the particle’s guiding center at time t. Taking the cross product of B with
both sides of (14), assuming time independent B and E fields, and considering the case that
the particle’s parallel velocity is much greater than its perpendicular guiding center velocity, it
is possible to express the component of the particle’s guiding center velocity perpendicular to
the magnetic field as follows:

dR⊥
dt

=
cE ×B
B2

+
cµB ×∇B

qB2
+
cmv2

‖B × (B̂ · ∇)B̂

qB2
. (15)

The three terms on the right hand side of Eq. (15) represent the “E×B drift,” “grad-B drift,”
and “curvature drift”, respectively. In all terms, both B and E are evaluated at the guiding
center R. In a planetary dipole with a cylindrical coordinate system centered on the planet,
the effects of the drifts for higher energy particles in Eq. (15) would be most pronounced in
the azimuthal (φ) component. As will be shown in Sec. 6, the effects of the guiding center
drifts can couple with rapid oscillations induced by the current disc for higher energy particles,
setting a particle’s orbit on a hyperbolic drift trajectory and allowing it to effectively escape the
magnetosphere from inside the magnetodisc.

2.4. Jupiter’s magnetic field

Magnetometers carried by the Pioneer 10/11 and Voyager 1/2 spacecraft measured Jupiter’s
magnetic field. In addition, charged particle detectors on Pioneer 10 recorded ten hour flux
rates of energetic charged particles. This periodic fluctuation of measurements is caused by the
existence of a current sheet aligned with the magnetic pole and at an angle to the rotational
pole. Randall [3] and Van Allen et al. [4] have used the fact that charged particles tend to
follow magnetic field lines to deduce a 10 degree tilt angle between the planet’s rotational and
dipole axes. Northrop et al. [5] interpreted delays in expected particle fluxes as due to the finite.
Alfven wave propagation, i.e., the delay between planetary rotation and subsequent rotation of
the outer parts of the distant magnetosphere, such that field lines deviate from the meridian
plane and have an azimuthal component. Smith et al. [6] interpret 10 hour particle fluxes as
due to the existence of an extended current sheet along the magnetic equator. Goertz et al. [7]
use the Pioneer 10 magnetometer and charged particle observations to produce a mathematical
model for the Jovian magnetic field. The magnetic field consists of the superposition of a dipole
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field with that produced by a current disc in the plane of the magnetic equator. In cylindrical
coordinates, the two fields are given by
dipole:

B% =
3Mzρ

(ρ2 + z2)
5
2

, (16a)

Bφ = 0, (16b)

Bρ =
M(2z2 − ρ2)

(ρ2 + z2)
5
2

, (16c)

current sheet:
bρ =

b0D

ρrα
tanh(z/D)− ab0z

ρrα+2
{ln[cosh(z/D)] + C}, (17a)

bφ = −6.12× 10−3eρ/500ρb%(ρ, z), (17b)

bz =
ab0
rα+2

{ln[cosh(z/D)] + C}, (17c)

where α, b0, C,D are constants determined by fitting the Pioneer 10 data (Table (1.0)), α is the
exponent of magnetodisc radial variation, b0 is the disc field variable, C is the dimensionless
constant, D is the disc thickness. In Eqs. (16), the constant M is the Jovian dipole moment,
found in Table (1.1).

Table 1.0. Magnetic field constants fit to
Pioneer 10 magnetometer data.
α b0 C D

0.7 9× 10−2 G 10 1RJ

Table 1.1. Pertinent physical values for Jupiter.
Planetary Dipole Planetary Orbital

radius moment rotation frequency
period

1RJ = 4.2 Gauss 10 h ω =
7.1492× 109 cm ×R3

J 1.745× 10−4 rad/s

Although the Voyager data is more recent, Voyager models of the magnetic field are reliable
only out to 30 Jovian radii, and the goal is to simulate particle motion in the range of 50–150
Jovian radii. Therefore, the field provided by Goertz et al. [7] with Pioneer 10 data is used. The
magnetic field model can then be expressed as

B(ρ, φ, z) = êρ(Bρ + bρ) + êφ(Bφ + bφ) + êz(Bz + bz). (18)

Figures 1.0–1.5 display the field strength and components as labeled, and clearly illustrate the
local minimum, or magnetic “well” in the field magnitude created by the current disc near the
magnetic equatorial plane. Figure 1.6 shows that the radius of curvature for any field line is
minimum on the magnetic equatorial plane, and that this curvature radius decreases as radial
distance from the planet increases. The “sharp turns” of field lines about the magnetic equator,
i.e., inside the current disc, cause the direction of the magnetic field to change abruptly. This
rapid spatial variation of the magnetic field inside the magnetodisc does not satisfy Eq. (9), which
requires a slow variation over space. Therefore, nonadiabatic and highly nonlinear motion near
the current disc is to be expected.
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Fig. 1.0. Field strength. Fig. 1.1. Field strength.

Fig. 1.2. Radial field. Fig. 1.3. Radial field.

Fig. 1.4. Z field. Fig. 1.5. Z field.

Fig. 1.6. Jovian field lines.

3. Basic method

Using the magnetic field model provided by Goertz et al. [7], we simulate charged parti-
cle motion through Jupiter’s magnetosphere and into the magnetodisc. Particles are injected
isotropically in velocity space. We perform different runs of the program by injecting electrons
and various ion species, and systematically varying the particle energy to analyze motion within
the magnetodisc.

To simplify calculations, we choose a reference frame that is corotating rigidly with the
magnetospheric plasma that is trapped on magnetic field lines. In this corotating frame the
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electric field due to rotating plasma vanishes. We account for the coriolis and centrifugal forces
that arise in this noninertial reference frame, and transform (1), using the subscript r to denote
that a function is evaluated in the rotating (noninertial) frame

dpr

dt
=
q

c
vr(t)×B(xr , t) +mω2r + 2mvr ×w, (19)

r = êρρ, (20)

w = êzω, (21)

B is given by (18), vr denotes the particle’s velocity in the corotating frame, ω is the angular
velocity of the corotation frame about the rotation axis, and ρ is the particle’s cylindrical radius
as measured from the planet. To corotate with Jupiter’s magnetosphere, we set ω equal to the
rotational frequency of the planet, as given in Table (1.1). The centrifugal and coriolis forces,
present in any rotating reference frame, are represented by the second and third terms of (19),
respectively. Taking the scalar product of the rotational velocity with both sides of (19) yields
a quantity that must be conserved during particle motion. This conserved quantity is the sum
of the particle’s kinetic energy and its centrifugal potential energy

1
2
mv2

r +
1
2
mω2ρ2 = ε. (22)

For calculating particle densities (i.e. simulating several thousand particle orbits), Eqs. (16)
and (17) can be costly in terms of computer time. Calculations are simplified by evaluating the
magnetic field on a two dimensional grid, and using a combination of table lookup and bilinear
interpolation found in Ref. [8].

Integration of (19) for the three components of position and corresponding velocity is accom-
plished using a fifth-order Runge–Kutta numerical integration procedure. An adaptive stepping
algorithm found in Ref. [9] and coded in Numerical Recipes in C (Vers 2.0) is slightly modified
and used to speed the integration process. A random number generator, also found in Numerical
Recipes in C (Vers. 2.0) is used to generate random initial conditions. Numerical accuracy is
monitored by assuring that the orbital invariant (22) remains constant to within 1 part in 103.

4. Single orbits

Particle orbits in the Jovian field can be classified roughly into three categories: bounded,
transient, and stochastic. Figures 2.0–2.1 show a transient orbit that characteristically follows
the expected dipolar orbit until it hits the current disc. Once inside, it bounces around un-
predictably, but quickly exits the magnetodisc to continue gyrating in a predictable fashion.
The time spent within the magnetodisc is very small, and once “outside” the particle continues
gyrating in the dipolar region of the field until it “mirrors” back into the magnetodisc. Another
type of orbit, not shown, is the bounded or “regular” orbit, that can only exist for particles
injected in the magnetodisc. Bound orbits are permanently trapped within the magnetodisc.
Figures 2.2–2.5 show stochastic orbits. Such orbits exhibit adiabatic characteristics outside the
magnetodisc region, but become trapped for long periods of time within the current disc. Once
within the current disc, the particle undergoes motion similar to that of a bounded orbit, but
with far less periodicity. Unlike bounded orbits, however, stochastic orbits eventually exit the
magnetodisc region. Figures 2.6–2.7 show particle motion in a dipole field, and serve as an
example of pure adiabatic motion.

Stochastic orbits temporarily trapped within the magnetodisc cross the magnetic equatorial
plane many times, while transient orbits tend to cross it once or twice. The number of equatorial
crossings of bounded orbits is unlimited. Particles are injected at a single point in the “neutral
plane”, i.e., z = 0, and various components of motion at subsequent neutral plane crossings are
recorded. This technique, titled the “Poincare surface of section”, allows otherwise undetectable
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properties of the three different particle orbits to be explored. Figures 3.0–3.7 show particle
behavior in a Poincare surface of section for various injection energies. Normalized particle
velocities are recorded at plane crossings to show that the bound, transient, and stochastic orbits
populate finite boundaries within phase space. The regions created by bounded orbits consist
of the tightly bounded concentric circular formations, each of which represents the crossings
of a single trapped particle, and whose radius depends upon injection velocity. It becomes
clearly visible that the bound orbits are confined to a particular “circle”, which implies that
their motion is governed by some invariant [10]. Stochastic orbits populate the region outside
the concentric circles, which is characterized by the large distribution of crossing points. No
unperturbed orbit can cross between the stochastic and bounded regions. Stochastic orbits
present a remarkable characteristic, namely, that the distance in phase space between two orbits
with nearly identical injection coordinates will diverge exponentially with time. Stochastic
orbits from particles injected at any differential initially stochastic region in the phase space will
entirely cover the stochastic region, regardless of what region is chosen. The space is shown to
be “sticky”, as stochastic orbits can come arbitrarily close to the bounded region and become
trapped for indefinitely long time periods, a property shown in Fig. 6, where no bounded orbits
exist (particles are injected outside of the magnetodisc), but the outline of the bounded region
is marked by “sticky” stochastic orbits. This characteristic is most clearly evident in Fig. 2.5,
where the circular bounces of the stochastic orbit in the ρ−φ plane mimic bounded orbit motion.
Transient orbits populate the sparse regions characterized by the seeming “bald spots” on the
figures. Transient orbits cross the neutral plane only a few times per magnetodisc entry, so their
presence in a space populated by “full-time” bounded orbits and “part-time” stochastic orbits is
relatively scarce. Accordingly, Fig. 3 shows only a few points in the transient region. Transient
orbits can, however, move into the stochastic region from a few particular transient points after
occupying a series of transient regions.

If plotted in three dimensional phase space, the crossing velocities shown in Fig. 3 would
map directly onto a sphere. Figures 3.3–3.7 demonstrate that such a sphere would be bilaterally
symmetrical upon the radial velocity axis. Such an assertion is rather obvious, since a bounded
orbit would require oppositely changing z velocity at every crossing in order to maintain its
circular orbit on the surface of section. The near symmetry about the horizontal line bisecting
Figs. 3.3–3.7 serves to validate the accuracy of the simulation model.

The structure of the phase space formation is highly dependent on the z component of the
magnetic field. A particle under the influence of two perfectly antiparallel field lines would
undergo either a figure eight motion around both field lines, or it would spiral around one field
line. To analyze chaotic motion, a quantity

κ ≡
√
ψc

rg
(23)

is defined, and the field line equatorial radius of curvature, ψc, is calculated to be∣∣−M/ρ3 + ab0C/ρ
α+2

∣∣{
(3M/ρ4+b0/D2ρα+1−ab0C/ rhoα+3)2+[heρ/500ρb0(b0/D2ρα+1−aC/ρα+3]2

} 1
2

.

(24)

As κ approaches unity, the level of chaos in the magnetodisc, measured by the percentage of
stochastic orbits, is maximized. For a one dimensional system depending only on z, Buchner and
Zeleny [11] have shown this behavior analytically and Chen and Palmadesso [10] have proven
it numerically. Karimabadi et al. [12] arrive at this result for a family of two dimensional field
models similar to the Jovian field model in (16–18). The values of κ, gyroradius, and curvature
radius based on the field (16–18) are represented in Fig. 4. Buchner and Zeleny [11] found that
for κ� 1, there is still a significant amount of chaos within the system. Particle behavior near
the current sheet is then not only nonadiabatic, but also chaotic.
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Fig. 2.0 Fig. 2.1

Fig. 2.2 Fig. 2.3

Fig. 2.4 Fig. 2.5

Fig. 2.6 Fig. 2.7

Upon first glance, Fig. 3.3 fails to show the structure evident for particles of lower energies.
The 10 meV particles yield a κ value that is approximately 17% smaller than that for the 10 keV
particles. Accordingly, the bounded space is replaced by stochastic orbits, which indicates a
greater amount of chaos, as (23) predicts. This effect is evident in the diminution of bound orbit
islands as injection energy increases. However, a 17% decrease in κ cannot virtually eliminate
all bounded orbits, as is suggested by Fig. 3.3. Each bounded particle seems confined to a
semicircle in the vρ−vφ plane. It is entirely possible that the bounded orbits do exist in their
complete circular form, but that they escape the system radially before they can complete their
circular phase space formation. This is more plausible than the complete elimination of bounded
orbits, and leads to the concept of energy drop-off that is discussed in Sec. 6. In fact, the ratio
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Fig. 3.0. 10 KeV protons. Fig. 3.1. 100 KeV protons.

Fig. 3.2. 1 MeV protons. Fig. 3.3. 10 MeV protons.

Fig. 3.4. 10 KeV protons. Fig. 3.5. 100 KeV protons.

Fig. 3.6. 1 MeV protons. Fig. 3.7. 10 MeV protons.

of particles that escaped radially to particles that remained trapped indefinitely in Fig. 3.3 was
much greater at 10 meV than at the lower energies. A slightly greater number of points lie in
the positive radial velocity hemisphere (Fig. 3.7 shows this best) and a large majority also lie
on the positive azimuthal hemisphere (Fig. 3.3).

Thus, there is a tendency for 10 meV protons to head in the positive ρ−φ direction, the
direction of escape. The radial component of velocity does appear to be cycling in the relatively
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Fig. 3.8. 10 KeV protons. Fig. 3.9. 100 KeV protons.

Fig. 3.10. 1 MeV protons. Fig. 3.11. 10 MeV protons.

Fig. 3.12. 10 KeV protons. Fig. 3.13. 100 KeV protons.

Fig. 3.14. 1 MeV protons. Fig. 3.15. 10 MeV protons.

expected way, but, assuming there are no “double loops”, the particle must always travel in
the positive azimuthal direction to satisfy the surface of section. The 10 meV particles follow a
serpentine motion, and their crossings with the neutral plane trace out a semicircle.

5. Probable regions

Figure 5 shows distributions of spatial density within 10 RJ for protons injected uniformly in
the radial range from 50 to 150 RJ, with z-component of ±2.5RJ. The pitch angle distribution is
isotropic at injection. The distributions are relatively symmetric about the z-axis as expected.
The curved “root-like” appearance of the densities in Fig. 5 is consistent with the field model in
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Fig. 4.0

Fig. 4.1

Fig. 1, and can be attributed to the cutoff of the radial component of initial injection. The density
enhancement evident within z = ±0.5RJ shows that the particles are being temporarily trapped
within the magnetodisc, again, as expected. With the current disc oscillating as the planet
rotates, these trapped particles in the magnetodisc account for the square-wave modulation of
particle count rates detected by the University of Iowa instrument abroad Pioneer 10 in the
region of 50–100RJ, as shown in Fig. 1 in Ref. [7]. The simulation is consistent with these data.

A highly informative feature in the spatial surface of section plots (azimuth versus radius),
most obvious for 10 meV particles, is the subtle appearance of “tracks” extending radially
outward, away from the clumped region. As Figs. 3.15 (10 meV protons) and 6.5–6.6 (10 meV
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protons) indicate, there is a current disc “escape route” for higher energy particles. Because
of their escape, these make negligible contribution to the density, especially when compared
to stochastic orbits that mimic bounded particles. However, the escaping particles are dense
enough to leave a small track behind.

6. Effect of initial energy and injection ρ

6.1. Analytic argument

The field given by

B(ρ) =
êzb

ρα
(25)

is inversely proportional to some power of the cylindrical distance from the planet. The ρ, φ, z
components of the Newton–Lorentz equations for such a field are as follows:

ρ̈− ρφ̇2 =
qb

mc
ρ̇ρ1−α, (26a)

ρφ̈+ 2ρ̇φ̇ = − qb

mc
ρ̇ρ−α, (26b)

z̈ = 0. (26c)

Multiplying (26b) by ρ and transforming it into differential form shows that for α 6= 2 the
quantity

ρ2φ̇+
qb

mc

ρ2−α

2− α
= ρ2

0φ̇0 +
qb

mc

ρ2−α
0

2− α
(27)

is conserved. Defining the local gyrofrequency at injection ρ as

Ω0 =
q(b/ρα0 )
mc

=
qB0

mc
(28)

such that (27) becomes a quadratic of the form(
ρ

ρ0

)2

φ̇+
Ω0

2− α

(
ρ

ρ0

)2−α
=

Ω0

2− α
. (29)

The next step is to find the maximum cylindrical radius given initial ρ and initial velocity. To
simplify matters, it is assumed that the injection velocity has only a ρ component (v = vρ), i.e.,
it is perpendicular to the magnetic field. Then, it is possible to substitute the velocity at any
point divided by the initial gyrofrequency for the initial gyroradius. Then, (29) transforms into

ξα−1 − ρ0/rg0

2− α
ξα−2 +

ρ0/rg0

2− α
, (30)

where
ξ ≡ ρmax

ρ0
. (31)

For a particle to escape, the initial conditions must be such (30) has an imaginary root, i.e., ρ
goes to infinity. According to Pioneer 10 data, the exponent of the Jovian magnetic field comes
out to about 2.7. It is appropriate to estimate (30) for α = 3 (the fall off rate for a magnetic
dipole), in which case (30) has the physically significant root

ξ =
ρ0

2rg0

{
1− [1− 4 (rg0/ρ0)]1/2

}
, (32)

which reveals that, for the specified simplifications, a particle can theoretically escape through
the z = 0 plane if its initial energy satisfies

W0 >
mΩ2

0ρ
2
0

32
. (33)
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Fig. 6.0. 52 rj. Fig. 6.1. 68 rj..

Fig. 6.2. 82 rj. Fig. 6.3. Positron at 82 rj.

Fig. 6.4. 52 rj. Fig. 6.5. 68 rj.

Fig. 6.6. 82 rj. Fig. 6.7. Positron at 82 rj.

6.2. Radial dependence

The probability of escaping through the magnetodisc is also dependent on injection radius. It
is prudent to use surface of section plots to illustrate this dependence. In Fig. 6, 10 meV protons
are injected at z = ±2.5RJ, to simulate injection into the current disc from high latitudes. This
eliminates bound orbits, which can only exist if the particle is injected in the current disc,
reemphasizes stochastic orbit properties, and simulates a more realistic situation. The positron
is plotted (Figs. 6.3, 6.7) because its small mass relative to that of a proton will allow it to map
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along the field line out to the radius where the field line crosses the equatorial plane. It serves
as an accuracy “check” of the simulation.

Figures 6.0–6.3 show the evolution of the phase-space coordinates as radial distance increases.
The preponderance of points tending toward the positive (outward) radial velocity hemisphere
indicate a clear tendency toward escape as injection radial distance increases. The position plots
(Figs. 6.4–6.6) show the particles performing a giant semicircular motion through subsequent
crossings. As injection radius increases, however, fewer and fewer particles reach the “reversal-
point” required to complete the loop and head back inward. As they circle outward, the fields
is also getting weaker, and the curvature radius of their semicircle is increasing. A fraction of
these orbits can become radially unbounded, and not come back inward, even if a radial “cutoff”
boundary in not specified.

6.3. Numerically calculated energy drop-offs

The preceding findings suggest the presence of an escape mechanism in the magnetodisc,
by which particles can radially exit the magnetosphere. To prove this numerically, we set up
a simulation in which we inject particles at a single radius, but still at z = ±2.5RJ. The four
energies of interest are: 10 meV, 1 meV, 100 keV, and 10 keV. This covers the energy range
relevant to energetic particle detectors on the Pioneer, Voyager, and Galileo spacecraft. The
effect of injection radius, demonstrated qualitatively for 10 meV particles in Fig. 6, is tested
quantitatively by limiting injection to a single radius and varying that radius in subsequent
runs. For each injection radius, four separate simulations are executed, one for each of the
aforementioned energies. The number of particles that travel beyond a ρ boundary of 200RJ in
a constant time are considered to “escape” the magnetodisc. Figure 7 shows the fundamental
result of this research. The probability of escape via the magnetodisc is clearly dependent on

Fig. 7. Escape probability vs. radial distance of injection (Z = 2.5RJ).

injection energy and ρ. Once a given particle species is injected from a certain escape radius as
determined by Fig. 7, all particles of that energy proceed to escape to the predefined boundary.
The probability of escape increases with injection energy and injection ρ. The error in the
calculations required to establish Fig. 7 is confined to ±5%.

7. Discussion

We have assumed that particles propagate along the time-independent, smooth magnetic
field in Eqs. (16) and (17). However, naturally occurring magnetic fields, like those in Jupiter’s
magnetosphere, fluctuate on a range of times and scales. These magnetic fluctuations can scat-
ter charged particles. The pitch angle of a particle can perturbed by Coulomb collisions, plasma
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waves, or small-scale field irregularities. Such effects could cause the particle to “jump” to an
otherwise restricted region of phase space and cross boundaries in the Poincare surface of section.
A more accurate simulation model would incorporate pitch angle scattering to account for such
effects as mentioned above. However, Cheng and Decker [1] demonstrated the “relative unim-
portance of scattering, even when the scattering substantial populates the regular (bounded)
orbit region of phase space”.

The particles in this simulation are treated as test particles, i.e., their presence does not
affect the existing field. As has been shown, these particles do tend to drift in the direction of
the current, so drift motion will actually augment the current density. Since the contribution of
these particles to the current disc is small, it is reasonable to ignore the self consistent aspects
of the problem.

We have not specified the origin of the injected protons in our simulation. One possible source
is the Jovian ionosphere. The Voyagers discovered active volcanoes on the moon Io, probably set
off by the tidal pumping between Europa and Ganymede, and Jupiter. The volcanic material
is ejected at approximately 1.05 kilometers/sec, enough to escape the moon. Io appears to
be the principle contributor of matter in the Jovian magnetosphere, secondary of course to
Jupiter. Another contributor of particles may well be from outside the system, as Goertz et
al. [7] predicted the existence of open field lines.

This research was carried out only for protons. It is well known that Jupiter’s magnetotail
contains high abundances of heavier ions such as oxygen and sulfur, that evidently originate at Io.
The radial escape mechanism will also apply to these heavier ions. We are currently investigating
this radial loss process for these heavier ions for comparison with spacecraft measurements.
Also, Jupiter’s magnetosphere is able to trap highly relativistic electrons. Our trial simulation
of positrons, displayed in Fig. 6.7, shows clearly that electrons will also undergo nonadiabatic
motion in Jupiter’s deep magnetotail. We are also actively investigating the motion of such
relativistic electrons in the Jovian magnetodisc. The results of this research can also be compared
with spacecraft observations of relativistic electrons.
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