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SUPERLUMINAL PULSE TUNNELING

M. Müller

Gymnasium Münchenstein, Grellingerstrasse 5,
4142 Münchenstein, Switzerland

The quantitative aspects of the tunneling of a Gaussian pulse through a barrier are dis-
cussed. The salient features are: the tunneling speed is generally greater than the vacuum
speed of light. However causality is not violated. The tunneling time does not depend
on the thickness of the forbidden zone. A lateral displacement of the transmitted pulse
is observed as is known from total reflexion. The propagation vector of the transmitted
pulse deviates from that of the incident pulse.
PACS numbers: 42.25.Bs, 42.25.Gy, 42.65.Re

1. Introduction

The velocity of a light pulse in a dielectric medium without dispersion is given by
the speed of light in that medium. However, at the boundaries of such media some
interesting effects occur especially under conditions of total reflection. If the boundary
at which total reflection occurs does not represent an infinitely extended barrier, partial
tunneling through the barrier takes place. Experiments with multilayered mirrors and
other barriers [1] which reflect almost all the light have shown that transmission of light
appears to occur at superluminal speeds and that transmission speeds do not depend on
the thickness of the barrier.

In this paper we discuss the effects for a special kind of barrier which is hit by a
Gaussian pulse.

2. The arrangement of the barrier

As a barrier we define a slab of vacuum which separates two dielectric media with a
given refractive index n > 1. The critical angle of incidence is given by

sinα =
1

n
. (1)

Light pulses with an angle of incidence greater than this critical angle are almost
completely reflected. However, there is a part of the electromagnetic field which can tunnel
through the slab if its thickness is of the order of magnitude of the average wavelength
of the pulse. It is this transmitted part of the pulse which we are interested in. Figure 1
outlines the arrangement of the boundary for the incoming pulse, resulting in a reflected
and transmitted component.
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Fig. 1. The arrangement of the slab.

3. The description of the pulse

For the sake of simplicity we take a Gaussian pulse as can be provided by a mode-
locked laser. For our investigation we define a two-dimensional coordinate system in the
plane of incidence (the x, z-plane in Fig. 1). Let us first introduce the two unit vectors ~e1

and ~e2; ~e1 being parallel to the propagation direction of the pulse, ~e2 being perpendicular
to ~e1. With the angle of incidence ϕ0 we obtain

~e1 =

(
sinϕ0

cosϕ0

)
, ~e2 =

(
− cosϕ0

sinϕ0

)
. (2)

The frequency of the laser is ω0, which leads to the wave vector

~k0 = k0~e1 =
ω0n

c
~e1. (3)

We choose the coordinate system in such a way that, at the time t = 0, the pulse
maximum is located at the origin, i.e., the electric field at t = 0 is given by

E(~r = a~e1 + b~e2, t = 0) = E0 exp

−1

2

(
a

d

)2

− 1

2

(
b

w

)2
 exp

(
−i~k0~r

)
, (4)

where w is half the pulse width at the point where the field magnitude decreases to 1/
√

e,
and d is the length of the pulse. The duration of the pulse is given by the relation

T =
2dn

c
. (5)

In Eq. (4) the phase of the electric field at a specific point is determined by ~k0. The
field magnitude is a Gaussian distribution with the parameters w and d. The Fourier
transform of (4) yields

E(~r, t = 0) =
wdE0

2π

∫ +∞

−∞

∫ +∞

−∞
exp

[
−(dj)2 + (wm)2

2

]
× exp[−i~k(j,m)~r]djdm, (6)

where
~k(j,m) = ~k0 + j~e1 +m~e2. (7)
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The integral (6) is the superposition of plane waves which propagate in time. Thus,
the complete description of the pulse in time and space is obtained as

E(~r, t) =
wdE0

2π

∫ +∞

−∞

∫ +∞

−∞
exp

[
−(dj)2 + (wm)2

2

]
× exp[iω(j,m)t− i~k(j,m)~r]djdm, (8)

where

ω(j,m) =

∣∣∣~k(j,m)
∣∣∣ c

n
. (9)

The Fourier transform (8) of the pulse allows us to calculate for each plane wave the
corresponding reflected and transmitted waves and to integrate the contributions of all
wave vectors.

4. A plane wave at the barrier

We will now investigate what happens to a plane wave which hits the barrier. ~k
denotes the wave vector, ϕ is the angle of incidence. The plane wave can be written in
the form

E(~r, t) = E exp(iωt− i ~kr) = E exp[iωt− ik(x sinϕ+ z cosϕ)]. (10)

According to Snellius’ law the angle of refraction ψ of the wave transmitted into the
vacuum slab is

sinψ = n sinϕ. (11)

This angle is only real as long as ϕ is smaller than the critical angle (1). The transmitted
wave is described by

T (~r, t) = T exp

{
−i
k

n
[x sinψ + (z − zs) cosψ]

}
, (12)

where z = zs is the position of the boundary. The wave vector is k = 2π
λ

= 2π
λnn

= kn
n

. The
coefficient T is given by Fresnel’s formulae

Tp =
2 sinψ cosϕ

sinϕ cosϕ+ sinψ cosψ
Ep(x = 0, z = zs, t),

Ts =
2 sinψ cosϕ

sinϕ cosψ + sinψ cosϕ
Es(x = 0, z = zs, t), (13)

where the indices p and s indicate the polarization of the electric field parallel and per-
pendicular, respectively, to the plane of incidence. E is the electric field at the boundary.
The formulae (11) and (13) can be derived directly from the Maxwell equations and are
therefore also valid for complex values of ψ.

Let us examine what the evanescent wave looks like if the angle of incidence ϕ is
greater than the critical angle. We use (11) to get an expression for cosψ

cosψ =
√

1− sin2 ψ =
√

1− n2 sin2 ϕ = ±i
√
n2 sin2 ϕ− 1. (14)

For the transmitted wave (12), we then obtain

T (~r, t) = T exp

[
−ikx sinϕ− k

n
(z − zs)

√
n2 sin2 ϕ− 1

]
, (15)
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where we have chosen the negative sign in (14) because otherwise the amplitude of the
transmitted wave would increase exponentially. As we can see, the electric field in the slab
is an evanescent wave which propagates parallel to the x-axis. The amplitude of the wave
decreases exponentially with the depth z − zs. In fact, the evanescent field is partially
reflected at the second boundary of the slab and again at the first boundary, so that
there is a superposition of multiple reflected waves in the slab. However, we can neglect
the parts of the transmitted wave which are reflected several times in the slab before
they leave it. For each time the “wave” in the slab travels back and forth, its amplitude

decreases by the factor exp
(
−2l k

n

√
n2 sin2 ϕ− 1

)
(l denotes the thickness of the slab).

This value is much smaller than 1 unless the slab is thinner than a small multiple of the
average wavelength of the pulse or the angle of incidence is almost equal to the critical
angle. However, we want to study the tunneling effect under conditions of almost total
reflection. Thus, we exclude extremely thin slabs and angles of incidence close to the
critical angle.

The evanescent wave in the slab produces a transmitted wave at the second boundary

T ′(~r, t) = T ′ exp {−ik[x sinϕ+ (z − zs − l) cosϕ]} . (16)

l is the thickness of the slab. T ′ is determined by Fresnel’s formulae

T ′p =
2 sinϕ cosψ

sinϕ cosϕ+ sinψ cosψ
Tp(x = 0, z = zs + l, t),

T ′s =
2 sinϕ cosψ

sinϕ cosψ + sinψ cosϕ
Ts(x = 0, z = zs + l, t). (17)

We will consider only parallel polarized waves. The description of the transmitted wave
is obtained from (10), (13), (15), (16) and (17)

T ′p(~r, t) =
4 sinψ cosϕ sinϕ cosψ

(sinϕ cosϕ+ sinψ cosψ)2
E

× exp
{
− ikzs cosϕ− k

n
l
√
n2 sin2 ϕ− 1 + iωt− ik[x sinϕ+ (z − zs − l) cosϕ]

}
and with (14)

T ′p(~r, t) =
−4in cosϕ

√
n2 sin2 ϕ− 1(

cosϕ− in
√
n2 sin2 ϕ− 1

)2E

× exp

{
−k
n
l
√
n2 sin2 ϕ− 1 + iωt− ik[x sinϕ+ (z − l) cosϕ]

}
. (18)

If we compare the formulae (18) and (10) for a selected value of x we see that the incoming
wave and the transmitted one are not in phase since the amplitude in (18) is complex
whereas in (10) it is real. This will be important below.

Let us transform the amplitude in (18):

−4in cosϕ
√
n2 sin2 ϕ− 1

(cosϕ− in
√
n2 sin2 ϕ− 1)2

= A(ϕ)ei[ϑ(ϕ)−π
2

], (19)

where

A(ϕ) =
4n cosϕ

√
n2 sin2 ϕ− 1

(n2 − 1)(n2 sin2 ϕ− cos2 ϕ)
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and

tanϑ(ϕ)/2 =
n
√
n2 sin2 ϕ− 1

cosϕ
. (20)

Finally, we have

T ′p(~r, t) = A(ϕ)E exp
{
− k
n
l
√
n2 sin2 ϕ− 1+iωt−ik[x sinϕ+(z−l) cosϕ]+i

[
ϑ(ϕ)− π

2

] }
.

(21)

5. The transmitted pulse

Let us return to the Gaussian pulse. In order to obtain the description of the trans-
mitted pulse we have to replace the expressions for the plane waves in (8) by (21)

T ′p(~r, t) =
wdE0

2π

∫ +∞

−∞

∫ +∞

−∞

{
A(ϕ) exp

[
−(dj)2 + (wm)2

2

]
× exp

(
−k
n
l
√
n2 sin2 ϕ− 1

)

× exp
[
iωt− ik[x sinϕ+ (z − l) cosϕ] + i

(
ϑ(ϕ)− π

2

)] }
djdm. (22)

Fig. 2. The components of the wave vectors.

The dependence of ϕ is given by (see Fig. 2)

ϕ = ϕ0 + Arc sin

(
m

k0 + j

)
≈ ϕ0 +

m

k0

. (23)

It is useful to recall the relations

k sinϕ = (k0 + j) sinϕ0 +m cosϕ0,

k cosϕ = (k0 + j) cosϕ0 −m sinϕ0, (24)

which can be obtained from Fig. 2. ϕ0 is the angle of incidence corresponding to ~k0.
The main contributions of the integral (22) come from values j and m which are small
compared to k0. For such j and m values the amplitude A(ϕ) in (22) is a slowly changing
function of ϕ and can thus be regarded as a constant whose value is determined by the
value at ϕ = ϕ0.

T ′p(~r, t) =
A(ϕ0)wdE0

2π

∫ +∞

−∞

∫ +∞

−∞

{
exp

[
−(dj)2 + (wm)2

2
− k

n
l
√
n2 sin2 ϕ− 1

]

× exp
[
iωt− ik[x sinϕ+ (z − l) cosϕ] + i

(
ϑ(ϕ)− π

2

)] }
djdm. (25)
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In order to see the influence of the new terms in the exponential function we need the
following expansions:

k
√
n2 sin2 ϕ− 1 ≈ (k0 + j)

√
n2 sin2 ϕ0 − 1 +

m sinϕ0 cosϕ0n
2√

n2 sin2 ϕ0 − 1
, (26)

ϑ = 2Arc tan

n
√
n2 sin2 ϕ− 1

cosϕ

 ≈ ϑ0 +
2n sinϕ0(

n2 sin2 ϕ0 − cos2 ϕ0

)√
n2 sin2 ϕ0 − 1

m

k0

, (27)

where

ϑ0 = 2Arc tan

n
√
n2 sin2 ϕ0 − 1

cosϕ0

 .
Terms of higher order in j and m are neglected. Let us now examine the real and the
imaginary exponent in (17) separately.

For the real part we get the approximation

−(dj)2 + (wm)2

2
− k

n
l
√
n2 sin2 ϕ− 1

≈ −(dj)2 + (wm)2

2
− l

n
(k0 + j)

√
n2 sin2 ϕ0 − 1− ml sinϕ0 cosϕ0n√

n2 sin2 ϕ0 − 1

≈ −d
2(j − j0)2 + w2(m−m0)2

2
− l k0

n

√
n2 sin2 ϕ0 − 1 +

(dj0)2 + (wm0)2

2

with

j0 = − l

d2n

√
n2 sin2 ϕ0 − 1

and

m0 = − nl sinϕ0 cosϕ0

w2
√
n2 sin2 ϕ0 − 1

. (28)

The imaginary part is obtained as

iωt− ik [x sinϕ+ (z − l) cosϕ] + i
[
ϑ(ϕ)− π

2

]
≈ iωt− i {x [(k0 + j) sinϕ0 +m cosϕ0] + (z − l) [(k0 + j) cosϕ0 −m sinϕ0]}

+i

ϑ0 +
2n sinϕ0

(n2 sin2 ϕ0 − cos2 ϕ0)
√
n2 sin2 ϕ0 − 1

m

k0

− π

2


= iωt− i {(x−∆x)[(k0 + j) sinϕ0 +m cosϕ0]

+(z − l + ∆z)[(k0 + j) cosϕ0 −m sinϕ0]}+ i
(
ϑ0 −

π

2

)
≈ iωt− ik [(x−∆x) sinϕ+ (z − l + ∆z) cosϕ] + i

(
ϑ0 −

π

2

)
with

∆x =
2n sinϕ0 cosϕ0

k0(n2 sin2 ϕ0 − cos2 ϕ0)
√
n2 sin2 ϕ0 − 1
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and

∆z =
2n sin2 ϕ0

k0(n2 sin2 ϕ0 − cos2 ϕ0)
√
n2 sin2 ϕ0 − 1

. (29)

Replacing the above approximations in (25) yields

T ′p(~r, t) =
BdwE0

2π

∫ +∞

−∞

∫ +∞

−∞
exp

{
−d

2(j − j0)2 + w2(m−m0)2

2

}

× exp {iωt− ik[(x−∆x) sinϕ+ (z − l + ∆z) cosϕ]} djdm (30)

with

B = A(ϕ0) exp

[
−(dj0)2 + (wm0)2

2
− k0

n
l
√
n2 sin2 ϕ0 − 1 + i

(
ϑ0 −

π

2

)]
.

Introducing the new integration variables

j′ = j − j0 and m′ = m−m0 (31)

transfers (30) into

T ′p(~r, t) ≈ BdwE0

2π

∫ +∞

−∞

∫ +∞

−∞
exp

[
−(dj′)2 + (wm′)2

2

]

× exp {iωt− ik[(x−∆x) sinϕ+ (z + ∆z − l) cosϕ]} dj′dm′. (32)

This is the description of a Gaussian pulse with new parameters. Let us determine them
by the two relations

k′ = k ⇒ (k0 + j)2 +m2 = (k′0 + j′)2 +m′2 ⇒ k′0 ≈ k0 + j0, (33)

k′0 sinϕ′0 ≈ (k0 + j0) sinϕ′0 = (k0 + j0) sinϕ0 +m0 cosϕ0

⇒ ϕ′0 ≈ ϕ0 + Arc sin

(
m0

k0 + j0

)
≈ ϕ0 +

m0

k0

. (34)

The resulting values are only approximations in the first order of m0 and j0. However,
this is sufficient because these are rather small compared to k0. The amplitude of the
transmitted pulse is smaller by the amount of the factor B. (The phase of B is not
relevant for our considerations.) The main direction of the pulse changes by the small
angle

∆ϕ =
m0

k0

= − nl sinϕ0 cosϕ0

w2k0

√
n2 sin2 ϕ0 − 1

. (35)

The main frequency of the pulse is also slightly modified, i.e. there is a small red shift
caused by the tunneling

∆ω0 = ∆k0
c

n
= j0

c

n
= − cl

d2n2

√
n2 sin2 ϕ0 − 1. (36)

The latter increases with the angle of incidence and the thickness of the slab. The shorter
the incoming pulse the greater the frequency shift, the latter depending on the inverse
square of the pulse duration.

Let us find the maximum of the transmitted Gaussian wave packet at a specific time t.
In a homogeneous medium without dispersion the maximum of a Gaussian pulse travels
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at a constant speed given by the vacuum speed of light divided by the refractive index of
the medium. Its amplitude decays with time because of the diffraction of the pulse. After
the pulse travelled a distance ∆s, its width can be derived as

w(∆s) =

√
w2 +

∆s2

w2k2
0

, (37)

where w denotes the initial width of the pulse. As long as ∆s is smaller than the so-called
Rayleigh range w2k0, the pulse diffraction is marginal. Beyond this range the width of
the pulse increases almost linearly with the propagation distance.

The transmitted wave propagates in the direction of the new wave vector ~k′0. The
physical interpretation of this directional change is the following. There are wave com-
ponents of the incoming pulse that have propagation directions which are more favorable
for transmission through the slab than along the main direction of the pulse. These pref-
erentially transmitted components decay less in the slab than the other components of
the pulse. These pulse components having the smaller angles of incidence constitute the
main part of the transmitted pulse. This explains why the transmitted pulse leaves the
slab under an angle slightly smaller than the initial angle of incidence.

Where and when does the transmitted pulse occur on the opposite side of the slab?
Equation (32) describes the pulse after transmission through the slab. By way of extrap-
olation to the time t = 0, we may define a virtual origin of the pulse, which is shifted by
x = ∆x, z = l − ∆z with respect to the true origin (x = 0, z = 0). From this virtual
origin and the propagation vector we obtain the exit position (xout, zout = zs + l) for the
transmitted pulse

xout = ∆x+ (zs + ∆z) tanϕ′0 ≈ ∆x+ zs

(
tanϕ0 +

m0

k0 cos2 ϕ0

)
+ ∆z tanϕ0

= zs tanϕ0 −
zsn tanϕ0l

w2k0

√
n2 sin2 ϕ0 − 1

+
2n tanϕ0

k0(n2 sin2 ϕ0 − cos2 ϕ0)
√
n2 sin2 ϕ0 − 1

. (38)

The first term is the x-coordinate where the incoming pulse hits the slab. The second
term is the shift due to the fact that the transmitted pulse is mostly built up by waves
with a smaller angle of incidence than ϕ0. The part of the pulse which propagates in the
direction of ϕ′0 reaches the slab earlier and at a smaller value of x than the whole wave
packet. Therefore the transmitted pulse leaves the slab at a backward shifted position.
The third term is the lateral shift of the Gaussian pulse which is well known from total
reflection [2]. This is due to the phase differences between the transmitted and incoming
pulse components. In the case of a single slab the lateral displacement of Gaussian pulses
is never greater than the width of the pulse. The fact that the second term is proportional
to the initial distance, zs, of the pulse from the slab is related to the diffraction of the
pulse: the longer this distance the larger the spatial separation from the main pulse of
those wave components which contribute most to transmission. The time point at which
the transmitted pulse leaves the slab is given by

tout =
n

c

zs + ∆z

cosϕ′
≈ n

c

(
1

cosϕ0

+
sinϕ0

cos2 ϕ0

m0

k0

)
zs +

n

c

∆z

cosϕ0

≈ zsn

c cosϕ0

− n2l sinϕ0 tanϕ0zs

w2ck0

√
n2 sin2 ϕ0 − 1

+
2n2 sinϕ0 tanϕ0

ck0(n2 sin2 ϕ0 − cos2 ϕ0)
√
n2 sin2 ϕ0 − 1

. (39)
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The first term denotes the time when the incoming pulse reaches the slab. The second
expression is due to the shorter distance which pulse components with a smaller angle of
incidence have to travel. The last term, which is rather small, denotes the additional time
which is required for the lateral displacement of the pulse. If the pulse is not extremely
wide (small w) and if there is a sufficiently long path to the slab, the transmitted pulse
appears earlier on the far side of the slab than the incident pulse reaches the barrier.

Let us consider the tunneling time. There are some difficulties to define a tunneling
time. Experimentally it is not possible to detect directly the time point when the pulse
leaves the slab, but the pulse must be observed somewhere in the adjacent medium behind
the slab. The time needed by the pulse to get from its origin to the point of detection
can be measured. The question is what we should compare it to. We could do the same
experiment without a slab. However, as we have seen the transmitted pulse has a slightly
different direction than the original pulse. Thus, an identical but undisturbed pulse will
not be detected at the same place as the transmitted pulse. Thus, the two paths of the
pulses cannot be directly compared. It is much better to take as reference a pulse which
travels through the homogeneous medium with the same direction as the transmitted
pulse (see Fig. 3). In this case the two paths are parallel and differ only in the small
lateral shift caused by the slab. Let us define the tunneling time as the difference between
the time point when the maximum of the transmitted pulse appears on the far side of the
slab and the time point when the undisturbed pulse hits the slab. This yields

ttunnel = tout −
n

c

zs

cosϕ′0
≈ n

c

∆z

cosϕ0

=
2n2 sinϕ0 tanϕ0

ck0(n2 sin2 ϕ0 − cos2 ϕ0)
√
n2 sin2 ϕ0 − 1

. (40)

This value is independent of the thickness of the slab!

Fig. 3. The arrangement of the experiment to measure the time differences between
tunneled and undisturbed pulses.

If we calculate the difference between the time needed by a pulse to reach the detector
(Fig. 3) either with or without a slab in between we obtain

∆t =
n

c
∆s− ttunnel =

n

c
[l cosϕ′0 + (xout − zs tanϕ′0) sinϕ′0]− ttunnel

≈ n

c

l cosϕ′0 +
2n tanϕ0

k0(n2 sin2 ϕ0 − cos2 ϕ0)
√
n2 sin2 ϕ0 − 1

sinϕ′0

− ttunnel,
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∆t ≈ n

c
l cosϕ′0. (41)

This result is quite interesting. It shows that the tunneling happens almost instanta-
neously. The time required for the tunneling corresponds to the time which the evanescent
field needs to cover the lateral shift. Had we defined the tunneling time as the difference
between the time points of the incoming and outgoing pulse maxima, we would even have
obtained a negative value.

The question is whether these results violate causality. Apparently the tunneling time
for the pulse maximum is superluminal. However, it must be emphasized that it is only
the maximum which appears to travel at this speed. Actually the pulse is reshaped in the
slab and comes out in a different form. Furthermore, the energy distribution of Gaussian
pulses is not limited in space. Therefore, we cannot apply the principle of causality in
its simplest form. Only if there was a distinct front of the pulse one could state that at
any point no signal can be detected before the pulse front propagating with the vacuum
speed of light would reach it.

6. Visualization of tunneling

The following pictures are not based on the above approximations, but take into
account multiple pulse reflections. They show the development of a tunneling pulse in
time. The first series (Fig. 4) gives an overview: the incident pulse approaches from
behind (z < 0, x > 0). In the first picture (Fig. 4a) the pulse maximum is expected to be

Fig. 4. Development of a pulse reflected at and transmitted through a barrier.
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Fig. 5. Development of a pulse reflected at and transmitted through a barrier (viewed
along the z-axis).

still in front of the slab which is located between z = 0 and z = 3. The z coordinate is
scaled in units of vacuum wavelengths of the laser. As the pulse is very close to the slab,
parts of the incident and reflected pulse interfere. This causes the disturbances and the
high values of the amplitude in the vicinity of the slab. Actually one would find standing
waves in front of the slab (z < 0); however, this fine structure is not resolved. As can
be seen, the field magnitude decreases very rapidly in the slab. The maximum of the
transmitted pulse already appears in the second picture (Fig. 4b) when the calculated
position of the maximum of the incident pulse has not yet reached the slab. The last two
figures (Fig. 4c, d) show the further development. Apart from the transmitted Gaussian
pulse we can see a second small pulse. Probably it is due to the multiple reflections or
to higher order terms which we did not take into account in our approximations. The
following two series (Fig. 5a–d and 6a–d) show the pulse at the same time points, but in
views perpendicular to the z-axis and x-axis, respectively. In these views the two main
effects related to tunneling are nicely born out. In the series of Fig. 5 the backward shift
can be observed, whereas in the series of Fig. 6 the fact that tunneling occurs faster than
reflection is evident. The maximum of the transmitted pulse already leaves the slab before
the incident pulse hits the slab. In Fig. 6d, the transmitted pulse is farther away from
the slab than the reflected one.
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Fig. 6. Development of a pulse reflected at and transmitted through a barrier (viewed
along the x-axis).
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