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Abstract

In this paper the magnetostatic energy in a ferromagnetic thin film with two imperfect,
rough surfaces has been calculated. It has been shown that the surface roughness gives
in some cases a considerable contribution to an effective perpendicular anisotropy.
Within the model assumed it has been proved that the value of magnetostatic energy
and, as a consequence, the anisotropy in a thin imperfect film does not depend on the
relative location of the two rough surfaces.

PACS numbers: 75.70.−i

1. Introduction

Discovery of the phenomenon of perpendicular anisotropy has gained much interest
in the past few years. It has opened new possibilities for memory applications. Ferro-
magnetic thin films have been widely investigated for use as a data storage medium in
magneto–optic or magneto–recording systems [1, 2].

The perpendicular magnetic anisotropy is attributed to the interfacial surface anisotropy,
which is a straightforward consequence of the fact that surface atoms are located in a dif-
ferent environment than the bulk ones. It has been found that at least three mechanisms
give rise to the surface anisotropy. Those are the single-ion mechanism, dipole–dipole
interaction and also the effect caused by the surface roughness.

The importance of the interfacial surface roughness in the phenomenon of magnetic
anisotropy was suggested by Bruno [3]. In this paper we examine only the surface rough-
ness, as a factor which contributes to the dipolar magnetic anisotropy. We derived formu-
las determining the magnetostatic energy and the surface anisotropy as functions of some
geometrical parameters of an imperfect ferromagnetic thin film. The calculation of the
magnetostatic energy and the surface anisotropy has been performed within the macro-
scopic theory of magnetism. (We have applied the continuous medium approximation.)

2. Model of surface roughness

In this paper we shall adopt the model of surface roughness proposed by Bruno [3].
The difference between the model of Bruno and the actual model used in the calculation
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is that we consider a ferromagnetic film having two rough surfaces and finite thickness t.
The thickness t may be considered an average, i.e. the experimentally measured distance
between surfaces of the film. The following parameters also characterize our probe: the
average deviation σ from the plane of the surface the average lateral size d of “craters” or
“terraces”, i.e. the flat areas on the surface, and the phase difference ψ between “craters”
on one surface and the other (cf. Fig. 1).

Fig. 1. Representation of a thin film with surface roughness showing the characteristic
parameters t, σ, d and ψ.

3. Calculation of magnetostatic energy

Calculation of the magnetostatic energy is based on the standard Fourier series method
proposed first by Kittel [4]. The magnetostatic energy is given by the following expression:

EM =
∫
−1

2
~M · ~HdV. (1)

We assume that the film shown in Fig. 1 is magnetized with the saturation magnetization
~Ms normal to the surface. The examined film may be considered as a superposition of

three magnetization distributions, as it is shown in Fig. 2. In the left upper corner of
Fig. 2 there is a side view of the thin film. Below that the decomposition of the magnetized
film into three parts is shown. Arrows indicate direction of magnetization of each specific
region in space. A picture in the right upper corner of Fig. 2 shows the top and the bottom
view of the film. The right column of Fig. 2 shows the top view of each of the component
parts forming together our rough ferromagnetic film. The gray regions are “terraces” and
the white ones are “craters”. The signs + and − indicate the direction of magnetization in
each region. Let us denote the magnetizations of the corresponding parts as ~M1, ~M2 and
~M3, demagnetizing fields as ~H1, ~H2 and ~H3, distributions of magnetic poles on surfaces

of each probe as σ1, σ2 and σ3 and, eventually, scalar potentials of demagnetizing fields
as φ1, φ2 and φ3 correspondingly (Fig. 2). Equation (1) transforms now as follows:

EM =
∫
−1

2
~H · ~MdV =

∫
−1

2

(
~H1 + ~H2 + ~H3

)
·
(
~M1 + ~M2 + ~M3

)
dV. (2)

It is important to notice that

∫
−1

2
~Hi · ~MidV =

∫ 1

2
(σiφi|z=surface1 − σiφi|z=surface2) dS. (3)
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Fig. 2. Decomposition of the magnetization distribution in a thin film with two rough
surfaces.

In accordance to Fig. 2 and making use of (3) we transform Eq. (2)

EM =
1

2

∫ 2d

0

∫ 2d

0
(σ1φ1|z=t − σ1φ1|z=0 + σ2φ2|z=t−2σ − σ2φ2|z=0

+σ3φ3|z=t−2σ − σ3φ3|z=−2σ + σ1φ3|z=t−2σ − σ1φ3|z=0 + σ3φ1|z=t−2σ

−σ3φ1|z=0 + σ1φ2|z=t−2σ − σ1φ2|z=0 + σ2φ1|z=t−2σ − σ2φ1|z=0

+σ2φ3|z=t−2σ − σ2φ3|z=0 + σ3φ2|z=t−2σ − σ3φ2|z=0) dxdy. (4)

The function of distribution of magnetic poles σ(x, y), which has a period 2d, may be
expanded in a double Fourier series

σ(x, y) =
∞∑
−∞

∞∑
−∞

Cmn exp
[
i
(
mπx

d
+
nπy

d

)]
. (5)

The Fourier coefficients Cmn are given by the expression

Cmn =
1

4π2

∫ 2π

0

∫ 2π

0
σ(x, y) exp[−i(mξ + nη)]dξdη, (6)

(ξ = πx/d, η = πy/d) .

In the same way we can expand the scalar potential φ(ξ, η) of the magnetic field ~H

φ(ξ, η) =
∑∑

φmn exp [i(mξ + nη)] exp(−Pmnz). (7)

The above potential satisfies Laplace’s equation and the condition of continuity of the
field on the surface of a probe: ∇2φ = 0, −∂φ

∂z

∣∣∣
z=surface

= 4πσ(x, y). Therefore we obtain

φmn = 4π
Cmn
−Pmn

, Pmn = (m2 + n2)1/2π/d, (n,m 6= 0). (8)
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We calculate the coefficients (6) for distributions of magnetic poles σ1, σ2 and σ3 in each
of the component parts of our probe. According to Fig. 2 the function σ1(x, y) is given
by the following formula:

σ1(x, y)|x,y∈[0,2d] =

{
Ms [(0, d)× (0, d)] ∪ [(d, 2d)× (d, 2d)]

0 [(d, 2d)× (0, d)] ∪ [(0, d)× (d, 2d)]
.

The results of the calculation are given below

C
(1)
00 =

Ms

2
, C

(1)
m0 = C

(1)
0n = 0, C(1)

mn = −2Ms/(π
2mn), (m,n− odd). (9)

We can also write formulas for σ2 and σ3

σ2(x, y)
x, y ∈ [0, 2d]

=



−Ms
[[(0, d)× (0, d)] \ [(0, d− ψ)× (0, d− ψ)]]
∪[[(d, 2d)× (d, 2d)] \ [(d, 2d− ψ)× (d, 2d− ψ)]]

Ms
[[(0, d)× (d, 2d)] \ [(0, d− ψ)× (d, 2d− ψ)]]
∪[[(d, 2d)× (0, d)] \ [(d, 2d− ψ)× (0, d− ψ)]]

0

[[(0, d− ψ)× (0, d− ψ)]
∪[(0, d− ψ)× (d, 2d− ψ)]]
∪[[(d, 2d− ψ)× (0, d− ψ)]
∪ [(d, 2d− ψ)× (d, 2d− ψ)]]

σ3(x, y)
x, y ∈ [0, 2d]

=



Ms

[(0, d− ψ)× (d− ψ, 2d− ψ)]
∪[(d− ψ, 2d− ψ)× (0, d− ψ)]
∪[(2d− ψ, 2d)× (d− ψ, 2d− ψ)]
∪[(d− ψ, 2d− ψ)× (2d− ψ, 2d)]

0

[(0, d− ψ)× (0, d− ψ)]
∪[(d− ψ, 2d− ψ)× (d− ψ, 2d− ψ)]
∪[(2d− ψ, 2d)× (0, d− ψ)]
∪[(2d− ψ, 2d)× (2d− ψ, 2d)]
∪[(0, d− ψ)× (2d− ψ, 2d)].

Analogically we obtain coefficients for the functions σ2 and σ3:

C
(2)
00 = C

(2)
m0 = C

(2)
0n = 0, C(2)

mn =
2Ms

π2mn
(1− exp(iδ(m+ n))), (10)

C
(3)
00 =

Ms

2
, C

(3)
m0 = C

(3)
0n = 0, C(3)

mn =
2Ms

π2mn
exp(iδ(m+ n)), (11)

where m, n are odd and δ = πψ/d, cf. Fig. 1.
Substituting (9), (10) and (11) into expression (5) yields

σ1 =
Ms

2
−

∞∑
k=−∞

∞∑
l=−∞

2Ms exp(i((2k + 1)ξ + (2l + 1)η))

π2(2k + 1)(2l + 1)
,

σ2 =
∞∑

k=−∞

∞∑
l=−∞

2Ms(1−exp(iδ((2k+1)+(2l+1)))) exp(i((2k+1)ξ+(2l+1)η))

π2(2k+1)(2l+1)
,

σ3 =
Ms

2
+

∞∑
k=−∞

∞∑
l=−∞

2Ms exp(iδ((2k+1)+(2l+1))) exp(i((2k+1)ξ+(2l+1)η))

π2(2k+1)(2l+1)
.
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We can also derive formulas for the potential (7) by making use of the expressions (9)–(11)

φ1 =
4πMs

2
z −

∞∑
k=−∞

∞∑
l=−∞

8πMs

(−1)π2(2l + 1)(2k + 1)Pkl

× exp(i((2k + 1)ξ + (2l + 1)η)) exp(−Pklz),

φ2 =
∞∑

k=−∞

∞∑
l=−∞

8πMs(1− exp(iδ((2k + 1) + (2l + 1))))

(−1)π2(2l + 1)(2k + 1)Pkl

× exp(i((2k + 1)ξ + (2l + 1)η)) exp(−Pklz),

φ3 =
4πMs

2
(z + 2σ) +

∞∑
gk=−∞

∞∑
l=−∞

8πMs exp(iδ((2k + 1) + (2l + 1)))

(−1)π2(2l + 1)(2k + 1)Pkl

× exp(i((2k + 1)ξ + (2l + 1)η)) exp(−Pkl(z + 2σ)),

where

Pkl =
π

d

[
(2k + 1)2 + (2l + 1)2

]1/2
.

Now we already know all the potentials and functions of distributions of magnetic poles, so
we are able to calculate the integral (4). As an example we shall calculate one component
of the sum (4)

1

2

∫ 2d

0

∫ 2d

0
(σ1φ1|z=t − σ1φ1|z=0)dxdy =

1

2

∫ 2d

0

∫ 2d

0
4π
(
Ms

2

)2

t

−4πMs

2
t
∞∑

k=−∞

∞∑
l=−∞

2Ms exp(iπ/d((2k + 1)x+ (2l + 1)y))

π2(2l + 1)(2k + 1)

−Ms

2

∞∑
k=−∞

∞∑
l=−∞

8πMs exp(iπ/d((2k+1)x+(2l+1)y))(exp(−Pklt)−1)

(−1)π2(2k+1)(2l+1)Pkl

+
∞∑

k=−∞

∞∑
l=−∞

2Ms exp(iπ/d((2k + 1)x+ (2l + 1)y))

π2(2k + 1)(2l + 1)

×
∞∑

k=−∞

∞∑
l=−∞

8πMs exp(iπ/d((2k+1)x+(2l+1)y))(exp(−Pklt)−1)

(−1)π2(2k+1)(2l+1)Pkl
dxdy.

Let us note that
∫ 2d

0 exp(iπnx/d)dx = 0 for n 6= 0. Then the above expression reduces to
the following form:

∫ 2d

0

∫ 2d

0
(σ1φ1|z=t − σ1φ1|z=0)dxdy =

∫ 2d

0

∫ 2d

0
4π
(
Ms

2

)2

t

+
16M2

s

π3

∞∑
k=−∞

∞∑
l=−∞

[1− exp(−Pklt)]
(2l + 1)2(2k + 1)2Pkl

dxdy.

In the same way we calculate all the other components of the integral (4). The result of
derivation of the expression for magnetostatic energy is shown below

E⊥M =
1

2
4πM2

s (2d)2
{
t− σ4d

π5

∞∑
k=−∞

∞∑
l=−∞

[
((2k + 1)2 + (2l + 1)2)−1/2

(2k + 1)2(2l + 1)2

×(1− exp(−Pklt) + exp(−Pkl(t− 2σ))− exp(−Pkl2σ)
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+i sin(δ((2k + 1) + (2l + 1)))(exp(−Pklt)− exp(−Pkl2σ)))]
}
.

As the function sin(x) is odd and the sum shown above goes through both positive and
negative numbers, the component i sin(δ((2l + 1) + (2k + 1)))(·) does not make any con-
tribution to the sum. Eventually we can write the equation for the magnetostatic energy
with magnetization normal to the surface of the probe

E⊥M =
1

2
4πM2

s (2d)2
{
t− σ +

42d

π5

×
∞∑
k=0

∞∑
l=0

[
1− exp(−Pklt) + exp(−Pkl(t− 2σ))− exp(−Pkl2σ)

(2k + 1)2(2l + 1)2((2k + 1)2 + (2l + 1)2)1/2

] }
where Pkl = π

d
[(2k+1)2 +(2l+1)2]1/2. One of the most important features of the equation

above is that it is not dependent on δ. It means that the value of magnetostatic energy
does not depend on relative location of “craters” between the upper surface and the lower
surface. In Fig. 3 the magnetostatic energy has been shown as a function of the average

Fig. 3. Graph of the magnetostatic energy E⊥M as a function of the average deviation
σ from the plane of the surface.

Fig. 4. Graph of the function f(σ).

deviation σ from the plane of a surface, for some chosen values of ratio t/d (σ ∈ [0, t/2),
d = 1). Figure 4 shows values of the function f(σ) defined below, also for the chosen
values of ratio t/d (σ ∈ [0, t/2), d = 1)

f(σ) =
42d

π5σ

∞∑
k=0

∞∑
l=0

(
1− exp(−Pklt) + exp(−Pkl(t− 2σ))− exp(−Pkl2σ)

(2k + 1)2(2l + 1)2((2k + 1)2 + (2l + 1)2)1/2

)
.
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4. Surface anisotropy

As we already know the magnetostatic energy of a thin film with magnetization normal
to the surface, we can easily derive the value of magnetostatic energy of this film with
magnetization parallel to the plane of the surface. To do this we apply the sum rule
presented by Yafet et al. [5]. By the symmetry reasons we have that Ex

M = Ey
M = E

‖
M (the

magnetostatic energy with magnetization parallel to the x axis equals the magnetostatic
energy with magnetization parallel to the y axis). The energies Ex

M , Ey
M and Ez

M satisfy
the following equation:

Ex
M + Ey

M + Ez
M = 2E

‖
M + E⊥M =

1

2
4πM2

s St.

Therefore we get

E
‖
M =

1

4
4πM2

s St−
1

2
E⊥M .

We can write that

E
‖
M − E⊥M =

1

4
4πM2

s St−
3

2
E⊥M =

1

4
4πM2

s St−
3

4
4πM2

sS(t− σ + σf(σ))

=
3

4
4πM2

s Sσ(1− f(σ))− 1

2
4πM2

s V.

In Fig. 5 the values of energy anisotropy (E
‖
M−E⊥M)/(2πM2

s ), as a function of the average
deviation σ from the plane of a surface, have been shown for some chosen values of ratio
t/d (σ ∈ [0, t/2), d = 1).

The difference between magnetostatic energies with magnetization parallel and normal
to the plane of the surface can be written in the following form:

E
‖
M − E⊥M = V KV + 2SKS,

where KV is the dipolar volume anisotropy constant and KS — the surface anisotropy
constant. Therefore we obtain

KS =
3

2
πM2

s σ(1− f(σ)). (12)

Figure 6 shows the surface anisotropy constant (12) as a function of the average deviation
σ from the plane of a surface, also for some chosen values of ratio t/d (σ ∈ [0, t/2), d = 1).

Fig. 5. The difference between the magnetostatic energies (E‖M − E⊥M )/2πM2
s as a

function of σ.
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Fig. 6. The surface anisotropy constant KS as a function of the average deviation σ

from the plane of a surface.

5. Conclusion

In this paper we have derived formula describing magnetostatic energy in a ferromag-
netic thin film with two rough surfaces magnetized with saturation magnetization Ms

normal to the plane of the surface. The value of magnetostatic energy depends on the
average distance between the surfaces. Still it has been found that it does not depend on
the parameter ψ, i.e. the phase difference between “craters” on the higher surface and
“craters” on the lower surface. In other words, relative location of the two surfaces does
not influence the value of magnetostatic energy. Also the values of energy anisotropy have
been calculated. In case of our thin film the difference between magnetostatic energies
(E
‖
M − E⊥M) remains a negative number within the range of parameters t, d and σ used.

It means that the easy direction magnetization remains parallel to the surface of the thin
film for the examined class of probes.
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