

oratoire de Spectrométrie Physique

From quantum optics to quantum communication

Jean-Philippe Poizat Jean-Philippe.Poizat@ujf-grenoble.fr Laboratoire de Spectrométrie Physique Equipe mixte CEA/CNRS/UJF Nanophysique et Semiconducteurs Grenoble, France

From quantum optics to quantum communication

Outlook : Important results in quantum mechanics

Quantum optics : the tools

Single photons Entangled photons (See M. Zukowski) Continuous variables Detectors Quantum cryptography Detailled presentation of BB84 Quantum computation with linear optics Notions (depending on time)

- 1) Position and momentum can not be known simultaneously
- 2) Measurements perturb the system
- 3) Notion of trajectory is no longer valid
- 4) Unknown quantum states can not be duplicated
- 5) Polarisation of a single photon can not be known

These impossibilities can be turned into advantages...

1) Position and momentum can not be known simultaneously

Heisenberg inequality $\Delta x \cdot \Delta p > h/2$

In quantum optics :

- Field quadratures are conjuguate quantities $X=(a+a^{+)}/2^{1/2}$ Y=(a- a⁺)/2^{1/2} $\Delta X \cdot \Delta Y > 1/2$

- For intense beams :

Photon number N and phase Φ are conjugate variables $\Delta N \cdot \Delta \Phi > 1$

2) Measurement perturbs the system

State $|\psi>$, observable A.

 $|\psi>$ is expanded on the $|\phi_i>$ basis of the A eigenvectors.

 $|\psi\rangle = \sum c_i |\phi_i\rangle$

* Eigenvalue a_i corresponding to eigenvector $|\phi_i\rangle$ is obtained with probability $P(a_i)=|c_i|^2$.

* After having obtained the result a_i , the system is projected in state $|\phi_i>$.

The measurement has changed the state of the system from $|\psi>$ to $|\phi_i>$.

A second measurement will give the result a_i with probability 1, since the system is then already in state $|\phi_i>$.

3) Notion of trajectory is no longer valid

Young slit experiment :

Superposition principle : — Interference

$$\left\|\Psi\right\|^{2} = \left\|\varphi_{1}\right\|^{2} + \left\|\varphi_{2}\right\|^{2} + 2\langle\varphi_{1}|\varphi_{2}\rangle$$

Entanglement

$$|\Psi\rangle = |0\rangle_1|1\rangle_2 + |1\rangle_1|0\rangle_2$$

4) No-cloning theorem

One wishes to clone the state of particle 1 over to particle 2. Particle 2 is initially in state |s>.

Suppose that U is the cloning operator

- If particle 1 is in state |x>
 - $U|x\rangle|s\rangle = |x\rangle|x\rangle \tag{a}$
- If particle 1 is in state |y> $U|v\rangle|s\rangle = |v\rangle|v\rangle$
- $U|y\rangle|s\rangle = |y\rangle|y\rangle \qquad (b)$ - If particle 1 is in state $|\Phi\rangle = (|x\rangle+|y\rangle)/\sqrt{2}$ i) (a)+(b) -> $U|\Phi\rangle|s\rangle = (|x\rangle|x\rangle+|y\rangle|y\rangle)/\sqrt{2}$ ii) $U|\Phi\rangle|s\rangle = |\Phi\rangle|\Phi\rangle$

 $= (|x\rangle|x\rangle + |y\rangle|y\rangle + |x\rangle|y\rangle + |y\rangle|x\rangle)/2$

i) et ii) do not give the same result !

5) Polarisation of a single photon can not be known

How to obtain information on the unknown linear polarization of a single incoming photon ?

Only solution : put a polarizing cube in a given orientation and see where the photon comes out.

The complete information can not be known for a single photon

From quantum optics to quantum communication

Outlook : Important results in quantum mechanics

Quantum optics : the tools

Single photons Entangled photons (See M. Zukowski) Continuous variables Detectors Quantum cryptography

Detailled presentation of BB84

Quantum computation with linear optics Notions (depending on time)

Single photon sources

How to characterize a single photon source ?

Measure the autocorrelation function

$$g^{(2)}(\tau) = \frac{}{^2}$$

How to measure the autocorrelation function ?

The ideal single photon source

Deterministic source with unity quantum efficiency*

One single photon per pulse : 1/T photons per second

Experimentally : excite the single dipole with a pulsed laser

* Ideal for quantum cryptography or metrology. Other properties such as spectrum can be important for other application, see later

NV centers in diamond

NV centers

Diamond nanocrystals Φ =50 nm containing a single NV center

- Repetition rate 5.3 MHz
- Rate of polarized single photons : 116 kcps
- Total efficiency : 2.2 %

1/g⁽²⁾(0)=14.2

Optical properties of a single quantum dot

- Non-resonant pumping : more than one e-h pair injected
- Spectral filtering of X line

J.M. Gérard et B. Gavral, J. Lightwave Technol. 17, 2089 (1999)

Possibility of large quantum efficiency

Quantum dots + 3D microcavities => Efficient single photon source Entangled pairs of photons (see M. Zukowski presentation)

$\chi^{(2)}$ non-linear crystal Kwiat et al (95)

$$h(2v) \longrightarrow hv + hv$$

Continuous variables

Quantum cryptography and quantum teleportation can be performed using continuous variables (ie with many photons):

Field quadrature components :

X= $(a + a^+)/2^{1/2}$ Y= $(a - a^+)/2^{1/2}$ With [X,Y]=i

These quadratures are measured with a local oscillator used as a phase reference.

Good point : no photon counting required

References :

Quantum teleportation : Furusawa et al, Science **282**, 706 (1998)

Detectors

Efficient photonic systems need

- good photon sources
- good detectors

Detector requirements for quantum cryptography

Photon counter with:

- Low dark count rate
- Large quantum efficiency
- High repetition rate
- Wavelengths : 1.3 or 1.55 μm

oratoire de Spectrométrie Physique

Detector requirements for photonic quantum gates

Very efficient detectors (>99%) with photon number resolution.

Candidates :

- Avalanche photodiodes (88% @ 694 nm), (Yamamoto et al)

- Proposals with atomic vapors (>99%),
 (Kwiat, Imamoglu)
- Superconducting detectors

Principle of superconducting hot electron bolometer

oratoire de Spectrométrie Physique

Ultrathin film (< 10 nm) of NbN, T<T_c=10K

Superconductivity is suppressed by the absorption of a photon (thermalisation time: 20 ps

Superconducting regime

Characterics of superconducting hot electron bolometers

oratoire de Spectrométrie Physique

- Photon counting regime, ultra-low noise.
- Ultra-fast detector (20 ps) without dead time :
 * Optical testing of large scale integrated devices
- Wavelength range : visible and near-IR (especially 1.3 et 1.55 μm)
 * Astrophysics
 * Quantum cryotography
- Many photon effects :
 - * Non-linear detection
 - * Photon number resolution

Comparison with other photon counters

oratoire de Spectrométrie Physique

Detector	Qu. Eff. (%)	Temporal resolution (ps)	'Dark cnt'/s	Temp.	
InGaAs APD/IR	10	500	10 000	Peltier	
Si APD/Visible	50	300	25	Peltier	
PM/Visible	20	25	2 000	-	
PM/IR	0.5	150	16 000	-	
STJ (supercond.)	40	10E6	-	Не (0,3 К)	
HEB (supercond.)	10	< 30	< 10	He (≈ 4 K)	

Device structure

Collaboration CEA/DRFMC, Grenoble B. Delaet, J.C. Villegier

SEM image

From quantum optics to quantum communication

<u>Outlook</u> : Important results in quantum mechanics

Quantum optics : the tools

Single photons Entangled photons (See M. Zukowski) Continuous variables Detectors

Quantum cryptography Detailled presentation of BB84

Quantum computation with linear optics Notions (depending on time)

Cryptography : the characters

Eve

Bob

Alice

Public key cryptosystems (1970)

Symmetrical encryption (secret key) One time pad (1917)

<u>Alice</u>

Message (M1) :1011010000000000Key (K) :0110100011101010Encrypted message (B1=M1+K):110111001110101010

<u>Bob</u>

For total security the key must be secret, as long as the message and used only once: $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ 100 Message (M2): 01 Key (K) 10 () 1000Encrypted message (B2=M2+K): 1000 ()01000 Decrypted message M2+M1 0110100 ()110

BB84 protocol (Bennett, Brassard 1984)

Enable a key distribution whose confidentiality is based on the law of quantum physics.

BB84 protocol

0, 90° basis : 0° -> bit=0, 90°-> bit=1 +/- 45° basis: -45°-> bit =0, 45°-> bit=1

Alice	basis	0°	45°	45°	0°	45°	0°	0°	45°
	Value	1	1	0	1	0	0	1	0
Bob	basis	45°	45°	0°	0°	45°	0°	45°	0°
	Result	0	1	1	1	0	0	1	0
Communication of the basis via a classical channel		OK		OK	OK	OK			
The key is :		1		1	0	0			

Eavesdropper detection

Alice	Basis	0°	45°	45°	0°	45°	0°	0°	45°
	Value	1	1	0	1	0	0	1	0
Eve	Basis	45°	0°	0°	45°	45°	0°	0°	45°
	Result	0	1	1	1	0	0	1	0
Bob	Basis	45°	45°	0°	0°	45°	0°	45°	0°
	Result	0	0	1	1	0	0	1	0
			Ът						
Error test			No		Yes	Yes	Yes		

Eve will introduce errors :

Error rate introduced by Eve

Eve can not duplicate the photon (no-cloning theorem)

Good strategy for Eve (intercept and resend):

Eve chooses randomly a measurement basis and send a photor corresponding to the result of her measurement.

* For a correct choice of the basis (50 % chance) :
Eve does not introduce any errors
* For a wrong choice of the basis (50 % chance) :
She sends a photon in the wrong basis, and if Bob chooses the correct basis, he has only 50% chance of obtaining the correct result.

This leads to an error rate of 25 % between Alice et Bob.

Single photon vs attenuated laser

Multiphoton pulses allow Eve to extract information

For attenuated laser pulse, the line is not longer secure : - if p(2)/p(1) > η, with unlimited technology, - if p(3)/p(1) > η, in any cases.

Other way of producing single photons

Use entangled photon pairs produced by $\chi^{(2)}$ parametric down conversion :

 $h_{V} \rightarrow h_{V_1} + h_{V_2}$ with $v = v_1 + v_2$ Polarization entangled state $I \Phi >= IH_1V_2 > + IV_1H_2 >$

Igh efficiency, better choice of wavelengths

Experimental difficulties

* <u>Sources</u> :

Have a good single photon source : Attenuated laser, photon pistol, photon pairs...

* Transmission :

Polarization dispersion in fibers, losses...

* Detection :

Photon counting at 1.3 ou 1.55 μ m is not very efficient.

Review article on quantum cryptography : N. Gisin et al, Rev. Mod. Phys. **74**, 145 (2002).

From quantum optics to quantum communication

<u>Outlook</u> :

Important results in quantum mechanics

Quantum optics : the tools

Single photons Entangled photons (See M. Zukowski) Continuous variables Detectors

Quantum cryptography

Detailled presentation of BB84

Quantum computation with linear optics Notions (depending on time)

oratoire de Spectrométrie Physique

Qubit carried by a single photon. For example, polarisation H : I0> V : I1>

* Good points :

- Single qubit operation are trivial
- Relatively good detection
- Propagation is natural
- Photons are relatively immune to decoherence

*Difficult points :

- Photon can not be stored
- Two qubit quantum gate :
 - Non-linear optics : very difficult
 - All-optical conditionnal quantum gate

Two qubits photonic quantum gate

Challenge : A single photon should change the state of another single photon.

* With non-linear optics : Requires extremely high non-linearity (perhaps achievable in Cavity QED).

* All-optical conditionnal quantum gate : Knill, Laflamme, Milburn proposal.

All-optical quantum gates

Principle (Knill et al, Nature 409, 46 2001):

How to build a computer with conditionnal gates a

oratoire de Spectrométrie Physique

These two systems are equivalent :

- A known state is prepared in advance using a conditionnal all-optical gate. It is stored in the blue box.

- It is then used when the real data $|m{lpha}
angle$ and $|m{eta}
angle$ come along.

Cottooman at Chuana Natura 402 200 (1009)

Experimental conditions required

oratoire de Spectrométrie Physique

1) Indistinguishable photons.

2) Very efficient detectors, resolving the photon number.

oratoire de Spectrométrie Physique

Elementary physical effect : Two-photon interference

The two photons must be indistinguishable :

- i) Arrive simultaneously
- ii) have the same polarization
- iii) have the same spectrum
- iv) come out in the same spatial modes

• Requires a single-mode single-photon source

Two-photon interference : Photon coalescence

Two-photon interference with two photons successively emitted by the same quantum dot :

C. Santori et al, Nature **419**, 594 (2002)

Indistinguishability : Spectral conditions

- Spectral width Δv of a photon should be minimum, ie $\Delta v=1/(2T_1)$, where T_1 is the emitter lifetime. The goal is $T_2=2T_1$.

-Two successive photons should have the same frequency (charge fluctuations may perturb).

Lifetime limited linewidth of single photons

oratoire de Spectrométrie Physique

Photon wave packet : $\Psi(t) = H(t)e^{-t/T_1}e^{-i(\omega t + \varphi(t))}$

 $H(t)e^{-t/T_1}$

 T_2^* is the dephasing time corresponding to the fluctuating $\varphi(t)$

Linewidth is :

$$\Delta v \propto \frac{1}{T_2} = \frac{1}{2T_1} + \frac{1}{T_2^*}$$

 T_1 : emitter's lifetime T_2 : coherence time

How to obtain a quantum dot with a lifetime limited linewidth ?

oratoire de Spectrométrie Physique

Linewidth is
$$\Delta v \propto \frac{1}{T_2} = \frac{1}{2T_1} + \frac{1}{T_2^*}$$

- Low temperature (2K) to reduce the phonon-induced dephasing rate (ie, enlarge T_2^*).

- Reduce lifetime T₁:
 - Well-chosen quantum dots,
 - Microcavity : Purcell effect.
- High quality epitaxial growth.

Photonic quantum gate : an example

π phase shift : qubit swapped

Photonic quantum gate : an example

When control output and target ouput clic in coincidence (probability 1/9), the CNOT gate is realized.

Photonic quantum gates

In the latter scheme the qubits are no longer available for further computing since they have to be detected.

Other schemes* exist that uses auxiliary photons and leave the qubits available for further computation.

*Proposal : Pittman et al PRA **68**, 032316 (2003) Experiment : Gasparoni et al, quant-ph 0404107

Conclusions and perspectives

Current status of photonic quantum information :

- * Photonic is the best for communication :
 - Quantum cryptography is mature
 - (2 start up, over 100 km in telecom fibers)
 - Quantum teleportation over large distance is under way
- * Photonic quantum computation is in the race...