Semiconductor few-electron quantum dots as spin qubits for quantum computing

*"Delft Spin Qubit Team"*Jeroen Elzerman

Ronald Hanson Laurens Willems van Beveren Frank Koppens Lieven Vandersypen Leo Kouwenhoven

— Collaborators Tarucha group (Tokyo) Loss group (Basel) Fujisawa, Hirayama (NTT)

ERATO NTT ()

- I. Introduction to quantum computing
- II. Quantum dots and spin
- **III.** One-electron quantum dots as spin qubits
- **IV. Outlook**

Part I. Introduction to quantum computing

"Hard" problems

No classical algorithm is known to *efficiently* factor integers

factoring takes exponential effort

Courtesy IBM Corporation

"Hard" problems are beyond the reach of any machine relying on the classical laws of physics

Complexity of Quantum Systems

n coupled quantum bits

 2^n degrees of freedom!

Could a quantum computer efficiently simulate quantum systems ? Could it be used to solve hard problems ?

Quantum Parallelism

Quantum algorithms

Measurement of |f(0)| + |f(1)| gives either f(0) or f(1)

The exponential power appears inaccessible ...

Nevertheless: quantum algorithms make computational speed-ups possible !

- Exponential for factoring integers (P. Shor 1994)
- Quadratic for unstructured searches (L. Grover 1996)
- Exponential for quantum simulations (S. Lloyd 1996)

Quantum error correction

Decoherence destroys quantum parallelism

The exponential power appears limited in time ...

Nevertheless: quantum error correction makes arbitrarily long quantum computations possible !

- Quantum error correction (P. Shor 1996, A. Steane 1996)
- Accuracy threshold (D. Aharonov 1997, A. Kitaev 1997, ...): ~10⁻⁴

Key challenge: combine access to qubits (initialization, control, readout) with high degree of isolation (coherence)

Factoring 15 with nuclear spins

Vandersypen et al., Nature 414, 883 (2001)

$15 = 3 \times 5$

Proof-of-principle of quantum computing

But:

No practical path for scaling liquid NMR to many more qubits

Trapped ions

Courtesy D. Wineland, NIST

Scalability is a big problem!

Neutral atoms in optical traps

Courtesy J. Kimble, Caltech

Charge quantum bits in the solid state

- Superconducting charge qubits
 - One- and two-qubit operations
 - Single-shot read-out
- Semiconductor quantum dots
 - Excitons in self-assembled quantum dots
 - Double dot charge qubit

Courtesy Y. Nakamura, NEC

- Charge easy to manipulate and read out
- But coherence time only ~ ns

"Scalable" single-spin qubit proposals

Electron spin in gated quantum dots (electrical)

Nuclear spin of P donors in Si

Kane, Nature 1998

Electron spin in self-assembled quantum dots (optical)

Gammon et al. Imamoglu et al., PRL 1999

Electron spin in a lateral quantum dot

Why electron spin in a lateral quantum dot?

- Electron spin is a natural 2-level system
- Well isolated from environment
 long coherence times expected
- Lateral quantum dots are very flexible and controllable systems, should be scalable

Of course, not only application-driven:

• Spin physics at the fundamental quantum limit: 1 spin !

Part II: Quantum dots and spin

Quantum dots

- Small box occupied by electrons (holes)
- Coupled via tunnel barriers to source and drain reservoirs
- Coupled capacitively to gate electrode(s)
- Box (island) has discrete energy spectrum
 - artificial atom!

Heterostructure processing

Lateral QD fabrication

- High-mobility 2DEG (~10⁶ cm²/ Vs)
- Density ~10¹⁵ m⁻² ♥ λ_F ~ 30 nm
- Resolution gate structure ~20 nm
- Dot size ~ 100 nm
- Comparable to electron wavelength
 - discrete energy spectrum

Vertical QD fabrication

Tarucha PRL 77, 3613 (`96)

Coulomb Blockade in transport

- Transport when μ (*N*) = $\mu_{\rm S}$, $\mu_{\rm D}$
- Small C_{Σ} large addition energy
- At low T, small V_{sd} , energy not available

Single electron tunneling

Non-linear transport

Experimental set-up

- Resonance width: lifetime (hΓ), V_{sd}, temperature, noise
- Peak spacing: charging + singleparticle spacing
- $E_{\rm C}$ ~ few meV
- *∆E* ~ few 0.1 meV
- 3 fA / Hz^{1/2} ♥ 1 e/50 μs

Single-particle levels & shell structure

Artificial atoms Kouwenhoven et al., Science 278, 1788 ('97)

- Few-electron QDs are artificial atoms
- Change element by tuning
 V_g
- Full shell *N* = 2,6,12,20... (noble elements)
- Half-full shell *N* = 4,9,16...

Hund's rule for N = 4

Half-filled
shell for
N=4,9,16,...
♥ total spin
maximized
(exchange)

- Transition in angular momentum (*l*) accompanied by spin transition
- Exchange energy ~0.8 meV
- Spin states well described by 2-electron states (S and T)

Singlet-triplet transition for N = 2

Spin transitions vs. B

- Spins gradually polarized as *B* increases
- Spin states more complicated as N increases
- Single-spin state (N = 1) always simple!

Part III: One-electron quantum dots as spin qubits

Spin qubits

BZ SL SR

Loss & DiVincenzo, PRA 57, 120 (1998)

- Qubit defined by Zeeman-split levels of *single electron* in quantum dot
- 1-qubit control:
 - magnetic (ESR-field)
 - electric (modulate effective g-factor)
- 2-qubit coupling: electric (exchange interaction between dots)
- Read-out of the qubit state!

We need...

one-electron double dots...

...fast charge detection...

....single spin measurement!

...two-level system...

Few-electron quantum dot circuit with integrated charge detector

N = 1 in lateral quantum dots?

- High-mobility 2DEG (~10⁶ cm²/ Vs)
- Density ~10¹¹ cm⁻² λ_F ~ 30 nm
- Smallest gate structure ~ 40 nm
- Dot size ~ 200 nm
 - discrete energy spectrum

BUT: Barriers close as dot is depleted ♥ current too small to measure!

Lateral few-electron double dot

Design: barriers don't close as DQD is depleted

QPC - detector for single dot

- Tune to steepest point (G ~ e²/h)
- Jumps in I_{QPC} ♥ change in electron number

- Modulate V_M with lock-in
 - measure dI_{QPC} / dV_M
- Dips in QPC-signal coincide with Coulomb peaks in transport!
- Sensitivity ~0.1e (at 17 Hz)

QPC - detector for isolated single dot

QPC can detect charge transitions in *isolated* QD!

QPC - detector for double dot

Tunable few-electron double dot

All triple points visible*barriers still open*

Photon-assisted tunneling

not visible

Summary...

We can:

- isolate single electron spin in (double) quantum dot
- study it using transport or charge detection

PRB 67, 161308(R) (2003)

We need...

one-electron double dots...

....single spin

measurement!

Zeeman splitting in an artificial Hydrogen atom

Similar double dot device: other gates grounded

N = 1 Coulomb diamond

N = 1 orbital ground state

N = 1 orbital excited state

N = 1 Zeeman splitting in B_{//}

N = 1 Zeeman splitting in B_{//}

Spectroscopy of qubit 2-level system

N = 1 dot as filter for spin-up

theory: Recher et al., PRL 85,1962 (2000)

Quantum dot in region I acts as *spin filter*; only spin-up electrons can pass through

N = 2 dot as filter for spin-down

theory: Recher et al., PRL 85,1962 (2000)

Quantum dot in region II acts as *spin filter*; only **spin-down** electrons can pass through

Summary...

We have:

- identified (stable) two-level system
- (*T*₁ > 50 μs)
- bipolar spin filter

Hanson *et al.*, PRL 91, 196802 (2003) Cond-mat/0311414

We need...

one-electron double dots...

....single spin measurement!

...two-level system...

Quantum Point Contact as a fast charge detector

- Tunnel barrier to QPC-channel closed completely
- QD weakly connected to reservoir
- Detect individual tunnel events

- Fast IV-converter: 100 kHz, 0.8nV/Hz^{1/2}
- Fast ISO-amp: 300 kHz
- Operating bandwidth: 40 kHz
- Shot noise limit: 100 MHz

QPC average charge detection (dc)

- $V_{\rm SD} = 1 \text{ mV}$ • $G_{\rm QPC} \sim 0.5 - 1.0 \ e^2/h$
- *I*_{QPC} ≈ 30 nA

- Sweep dot-gate $(V_{\rm M})$
- I_{QPC} increases (~1%) when <N> from 1 to 0

Real-time single-electron tunneling

Real-time single-electron tunneling

Tunneling induced by pulse

Tunnel-time is stochastic

- Tunnel-in event visible
- Tunnel-out event very fast

- Tunnel-in event too fast
- Tunnel-out event visible

Fastest tunnel events

Histograms tunnel time

Summary...

We can:

measure single-electron tunneling in *real-time* (~10 μs)

We need...

one-electron double dots...

....single spin

measurement!

...two-level system...

Single-shot measurement of a single electron-spin

Single-spin measurement concept

- Spin magnetic moment: $\mu_B = 9.27 \times 10^{-23}$ A m² very small!
- But: spin attached to electron (which has charge)
- So: correlate spin orientation to electron's position
- Then measure charge

Spin-to-charge conversion

Use Zeeman splitting $\Delta E_{Z} = g \mu_{B} B$

- Spin-to-charge conversion (within $T_1 > 50 \ \mu s$)
- Fast charge read-out

Spin read-out procedure

Finding the spin read-out regime

Single-shot spin read-out results

More spin-down traces

$$(V)$$
 O_{V}^{0} (V) O_{V}^{0} (V) (V)

Verification spin read-out

Read-out characterization

Characterization $\alpha = P$ ("down" if \uparrow)

$$p(1-\beta-\alpha)\exp(-t/T_1)+\alpha$$

Characterization $\beta = P$ ("up" if \downarrow)

$$\beta_1 = P$$
 (flips before tunnelling)
 $\frac{1/T_1}{1/T_1 + \Gamma_{\downarrow}} = \frac{1}{1 + \Gamma_{\downarrow} T_1}$

$$\beta_2 = P \text{ (miss step)}$$

 $\left(\int_{0}^{\infty} \int_{0}^{1} \int_{0$

$$1 - \beta = (1 - \beta_1)(1 - \beta_2) + \alpha \beta_1$$

Summary single-shot read-out fidelity

Future improvements:

- α : lower T_{el}
- β: faster charge detection
Summary...

We can:

perform single-shot measurement of one electron-spin

We have...

one-electron double dots...

....single spin measurement!

...two-level system...

Part IV: Outlook

Coherent spin manipulation (ESR) Two-qubit operations (SWAP^{1/2}) Bell's inequalities for massive particles

Quantum simulation?

• • •

Quantum computation??