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What is this talk about?

A non-relativistic quantum theory of finite systems

We study quantum correlations between subsystems.

Consider a quantum system S described in a finite dimensional complex
Hilbert space Hd .

Assume that the system S consists of m subsystems S1,S2, . . . ,Sm. Then
the Hilbert space has the structure of an m–fold tensor product

Hd := H1 ⊗H2 ⊗ · · · ⊗ Hm

of dimension d = N1 × N2 × · · · × Nm.

Assume we do not know the quantum dynamics

What can be said about the quantum state which evolves unitarily in time,

|ψ(t)〉 = U(t) |ψ(0)〉 ?
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Unitary Dynamics & Quantum Chaos

’Quantum chaology’: analogues of classically chaotic systems

Quantum analogues of classically chaotic dynamical systems can be
described by random matrices
a). autonomous systems – Hamiltonians:

Gaussian ensembles of random Hermitian matrices, (GOE, GUE, GSE)
b). periodic systems – evolution operators:

Dyson circular ensembles of random unitary matrices, (COE, CUE, CSE)

Universality classes

Depending on the symmetry properties of the system one uses ensembles
form orthogonal (β = 1); unitary (β = 2) and symplectic (β = 4)
ensembles.
The exponent β determines the level repulsion, P(s) ∼ sβ for s → 0 where
s stands for the (normalised) level spacing, si = φi+1 − φi .

see e.g. F. Haake, Quantum Signatures of Chaos
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Random Pure states in HN

’Quantum chaotic’ dynamics (pseudo-random evolution)

described by a random unitary matrix U acting on a pure state produces
(almost surely) a ’generic pure state’ |ψ〉 = U|φ0〉.

• Formally one defines an (unique) Fubini–Study measure µ on complex
projective spaces which is unitarily invariant: for any (measurable) set A

of states one requires µ(A) = µ(U(A)).

• This measure covers the entire space CPN−1 uniformly, and for N = 2
it is just equivalent to the uniform, Lebesgue measure on the Bloch
sphere S2.

How to obtain a random pure state |ψ〉 ?

a) Take a column (a row) of a random unitary U so that |ψ〉 = U|i〉.
b) generate N independent complex random numbers zi according to
the normal distribution. Write |ψ〉 =

∑N
i=1 ci |i〉 where the expansion

coefficients read ci = zi/
√

∑

i |zi |2 .
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One quantum state fixed, one random...

Fix an arbitrary state |ψ1〉. Generate randomly the other state |ψ2〉.

• What is the average angle χ between these states ?

• What is the distribution P(χ) of the angle χ := arccos |〈ψ1|ψ2〉| ?
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One quantum state fixed, one random...

Fix an arbitrary state |ψ1〉. Generate randomly the other state |ψ2〉.

• What is the average angle χ between these states ?

• What is the distribution P(χ) of the angle χ := arccos |〈ψ1|ψ2〉| ?

Measure concentration phenomenon

’Fat hiper-equator’ of the sphere SN in RN+1...
It is a consequence of the Jacobian factor for expressing the volume
element of the N– sphere. Let z = cosϑ1, so that

J ∼ (sin ϑ1)
N−1J2(ϑ2, . . . , ϑN)

Hence the typical angle χ is ’close’ to π/2 and two ’typical random states’
are orthogonal and the distribution P(χ) is ’close’ to δ(χ− π/2).

How close?
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Quantitative description of Measure Concentration

Levy’s Lemma (on higher dimensional spheres)

Let f : SN → R be a Lipschitz function,
with the constant η and the mean value 〈f 〉 =

∫

SN f (x)dµ(x).
Pick a point x ∈ SN at random from the sphere. For large N it is then
unlikely to get a value of f much different then the average:

P
(

|f (x) − 〈f 〉| > α
)

≤ 2 exp
(

−
(N + 1)α2

9π3η2

)

Simple application: the distance from the ’equator’
.
Take f (x1, ...xN+1) = x1. Then Levy’s Lemma says that the probability
of finding a random point of SN outside a band along the equator of
width 2α converges exponentially to zero as 2 exp[−C (N + 1)α2].

As N >> 1 then every equator of SN is ’FAT’.
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Composed systems & entangled states

bi-partite systems: H = HA ⊗HB

separable pure states: |ψ〉 = |φA〉 ⊗ |φB〉

entangled pure states: all states not of the above product form.

Two–qubit system: d = 2 × 2 = 4

Maximally entangled Bell state |ϕ+〉 := 1√
2

(

|00〉 + |11〉
)

Entanglement measures

For any pure state |ψ〉 ∈ HA ⊗HB define its partial trace σ = TrB |ψ〉〈ψ|.
Definition: Entanglement entropy of |ψ〉 is equal to von Neumann
entropy of the partial trace

E (|ψ〉) := −Tr σ lnσ

The more mixed partial trace, the more entangled initial pure state...
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Generic pure states of a bi-partite system

’Two quNits’ = N × N quantum system

The space CPN2−1 of all states in H = HN ⊗HN has dtot = N2 − 2
dimensions.
The subspace of separable (product) states CPN−1 ×CPN−1 has only
dsep = 2(N − 2) dimensions. For large N we observe that
dsep ∼ 2N << dtot ∼ N2 so the separable states form a set of measure
zero in the space of all states.

Thus a ’typical’ random state is entangled!
How much entangled?

Mean entropy of the reduced density matrix ρ

Let us call H = HA ⊗HB . Take any pure state |ψ〉 ∈ H and define its
partial trace ρ := TrB |ψ〉〈ψ| = TrA|ψ〉〈ψ|.
The von Neumann entropy S of the reduced mixed state ρ is a
measure of entanglement of the initially pure bi-partite state |ψ〉.
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Concentration of entropy of the partial trace

Consider an N × K system with K ≥ N

The maximal entropy (achieved for ρ∗ = 1N/N) is equal to Smax := lnN.
Since the mean entropy, 〈S〉ψ ≈ Smax −

N
2K , is close to the maximal

value a concentration effect has to occur...

Levy’s lemma and concentration of entanglement

Consider the sphere S2NK−1 which represents pure states of a N × K

system with K ≥ N ≥ 3. Use Levy’s lemma with f = S(ρ). It implies

P
(

S(TrB |ψ〉〈ψ|) < lnN − N/K − α
)

≤ exp
(

−
(NK − 1)

8(π lnN)2
α2

)

Hayden, Leung, Winter (2006)

Thus the reduced density matrix ρ is close to the maximally mixed state
ρ∗ = 1N/N, while the initial random pure state is close to a maximally
entangled state |ψ+〉 with entropy Smax = lnN.
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Graphs & Quantum graphs

How a quantum graph looks like ?
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Graphs & Quantum graphs

How a quantum graph looks like ?

existing quantum graph
by Leszek Sirko
and his team in Warsaw ....

A different kind of quantum graphs discussed here:

Ensembles of
a) random quantum states
b) random unitary matrices

associated with a given graph.
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Multi–partite systems:
a) random states associated with a graph

Graph random states

Consider a graph Γ consisting of m edges B1, . . .Bm and k vertices
V1, . . .Vk . It represents a composite quantum system consisting of 2m

sub–systems described in the Hilbert space with 2m–fold tensor product
H = H1 ⊗ · · · ⊗ H2m of dimension N2m.
Each edge represents the maximally entangled state |Φ+〉 in both
subspaces, while each vertex represents a random unitary matrix U
(Haar measure =’generic’ Hamiltonian), coupling connected systems.

A simple example: three vertices & two edges

V1 V3V2

V2V1 V3

H2H1 H3 H4

|Φ+

12〉 |Φ+

34〉

We define a random state |ψ〉 = (U1 ⊗ U23 ⊗ U4) |Φ
+
12〉 ⊗ |Φ+

34〉
where |Φ+

kj〉 denotes the maximally entangled state in subspaces k , j .
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Multi–partite graph systems: mixed states

Partial trace over certain subspaces

Consider an ensemble of random pure states |ψ〉 corresponding to a
given graph Γ. Select a fixed subset T of subspaces and define a
(random) mixed state ρ(T ) = TrT |ψ〉〈ψ|.

Tasks

• Determine the spectral properties of the ensemble of mixed states
ρ(T ) associated with the graph Γ.

• Find the mean entropy 〈S(ρ)〉ψ of the reduced state ρ averaged over
the ensemble of graph random pure states |ψ〉Γ,T .

Examples of partial trace for the graph Γ

V1

V3

V2 V1 V2

V3

V2V1

V3

The partial
trace is taken over all the subspaces T represented by open symbols.
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Graphs and random multi–partite systems

Partial trace over certain subspaces

For ensembles of random states associated with certain graphs Γ and
selected subspaces T – cross (×) – over which the partial trace takes place

H3 H4 H5 H6 H7 H8H1 H2

V

V2 V1 V3

V1

V3

V4 V2

H3

H4

H5H6

H8

H7

H1 H2|Φ+
8,1〉

|Φ+
6,7〉

|Φ+
2,3〉

|Φ+
4,5〉

one can compute moments of the traces µq := 〈Trρq〉ψ
and then obtain bounds for the average entropy 〈S〉 = 〈−Trρ ln ρ〉ψ.

Collins, Nechita, K.Ż, J. Phys. A (2010)
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Spectral properties of random mixed states I

Example 1: 2 bonds, 4 subsystems and one bi-partite interaction U0

a) h0 – maximaly mixed state ρ = 1
N
1 with entropy S(ρ) = lnN

V1

V3

V2

or

V1 V2

V3

b) h1 random mixed state generated according to the induced measure

V2V1

V3

with entropy S(ρ) ≈ lnN − 1/2

Let |ψ〉 =
∑

i

∑

j Cij |i〉 ⊗ |j〉 be a random pure state.

Then C is a random matrix of Ginibre ensemble (not hermitian!)
consisting of independent complex Gaussian entries. The only constraint is
its norm: since 〈ψ|ψ〉 = 1 then |C |2 = TrCC † = 1.

What is the distribution of eigenvalues of a non–hermitian matrix C

and of a positive Wishart matrix ρ = TrB |ψ〉〈ψ| = CC † ?
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Spectral properties of random matrices

Non-hermitian matrix C of size N of the Ginibre ensemble

Under normalization TrCC † = N

the spectrum of C fills uniformly
(for large N!) the unit disk

The so–called circular law
of Girko !

Hermitian, positive matrix ρ = CC † of the Wishart ensemble

Let x = Nλi , where {λi} denotes the spectrum of ρ. As Trρ = 1 so
〈x〉 = 1. Distribution of the spectrum P(x) is asymptotically given by the
Marchenko–Pastur law

h1(x) = PMP(x) = 1
2π

√

4
x
− 1 for x ∈ [0, 4]
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Spectral properties of random mixed states II

Example 2: 4 bonds, 8 subsystems and four bi-partite interactions Vi

c) h2 random mixed state generated by the 4–cycle graph
V1

V3

V4 V2

H3

H4

H5H6

H8

H7

H1 H2|Φ+
8,1〉

|Φ+
6,7〉

|Φ+
2,3〉

|Φ+
4,5〉

After partial trace over crossed subsystems
the random mixed state has the structure

ρ = αG2G1G
†
1G

†
2 ,

where G1 and G2 are independent Ginibre
matrices and α = 1/TrG2G1G

†
1G

†
2 .

Mixed states with spectrum given by the
Fuss-Catalan distribution h2(x)

characterized by mean entropy
S(ρ) ≈ lnN − 5/6

PMP(x) = h1(x) and h2(x).
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Multi–partite systems: a lattice L

Partition of the lattice into two disjoint sets, L = A ∪ Ā

Consider lattice (graph), in which each vertex denotes a spin
(different meaning than before!)

and each edge represents an interaction defined by a local Hamiltonian H.

Let A denotes a distinguished set of vertices while ∂A represents spins
belonging to its area, i.e. these spins for which some edges are cut away.
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Area law for a partition of the lattice L = A ∪ Ā

Consider an eigenstate |ψ〉 of the Hamiltonian H, define set of spins A

and take the partial trace of the pure state over all spins belonging to the
complementary set Ā.

• Von Neumann entropy of the resulting mixed state ρ := TrĀ|ψ〉〈ψ| is
proportional to the area ∂A of the distinguished subset A.
Hence entanglement of the state |ψ〉 with respect to the partition
A ∪ Ā behaves as the area ∂A.

Eisert, Cramer, Plenio 2008, Rev. Mod. Phys. 2008
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Universal Entanglement Area Law

Area law for random graph states

Theorem. Consider a graph Γ and its partition into two sets A and Ā. Let
|ψ〉 be a random graph pure state and ρ := TrĀ|ψ〉〈ψ|.
Then the mean entropy of ρ (entanglement entropy of |ψ〉) is
proportional to the number M of bonds cut (’area’ of A) ,

〈S(ρ)〉ψ = M ln N + O(1) .

Example: graph with 10 bonds, M = 5 of them cut

V3

V1

V5

V4

V2

V3

V5

V2

V4

V1

The area law S(ρ) ≈ 5 lnN is
universal – no dependence on
the choice of interaction in the
vertices.

Only the topology of the
interaction matters!
B. Collins, I. Nechita, K. Ż.,
arXiv:1302.0709 (2013)
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b) Structured random unitaries related to a graph

Two–step time evolution - for a system in HN2m

Let Γ be a graph consisting of k vertices V1, . . .Vk and m bonds B1 . . .Bm.
The corresponding ensemble of random unitary matrices of size N2m reads

U = VW =
(

Va ⊗ · · · ⊗ Vk

) (

Wα ⊗ · · · ⊗ Wµ

)

,
where Vi and Wν denote CUE random unitaries representing interaction in
the vertices and along the bonds, respectively.

Attention: symbols ⊗ here and ⊗ here represent tensor
product with respect to different spliting of the Hilbert space !

Example: triangle graph with m = 3 bonds and k = 3 vertices

=
U△ = VW =

(

V23 ⊗ V45 ⊗ V61

)(

W12 ⊗ W34 ⊗ W56

)
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Results: some properties of the graph ensembles

Level spacing distribution P(s) for structured random unitaries

For disconnected graph: Poissonian statistics, P(s) = exp(−s)

Explanation: for large dimension tensor product U1 ⊗ U2 of two CUE
matrices displays Poissonian level statistics

T. Tkocz, M. Smaczyński, M. Kuś, O. Zeituni, K.Życzkowski
(2012)

For connected graph: Wigner-like CUE –like statistics
P(s) ≈ 32

π2 s
2 exp(− 4

π
s2)

0 1 2
S
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Distribution of matrix elements

Statistics of matrix elements, e.g. the elements entropy
Hel(U) := − 1

M

∑M

i=1

∑M

j=1 |U
2
ij ln |Uij |

2

differs from CUE matrices of size M = N2m

4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15
element entropy Hel

10-2

10-1

100

101

102

103

P
(H

el
)

3-step evol.
2-step evol.
full CUE
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Distribution of eigenvectors

Statistics of eigenvectors elements, e.g. the eigenvector entropy
Hel(U) := − 1

M

∑

v

∑M

j=1 |vj |
2 ln |vj |

2

behaves like for CUE random matrices of size M = N2m

”Cheap” method to generate random CUE matrices of size M = nk out
of k smaller CUE matrices of size n2

U = VW =
(

V23 ⊗ V45 ⊗ · · · ⊗ Vk,1

)(

W12 ⊗ W34 ⊗ · · · ⊗ Wk−1,k

)

.
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Topology of the graph
and corresponding ensembles of random matrices

Search for statistical properties of ensembles
depending on the topology of the graph

Motivation:
Isomorphic graphs problem:

For two (classical) graphs Γ1 and Γ2, with the same number of vertices
and bonds, check, whether these graphs are isomorphic, Γ1 ∼ Γ2 ?

Distributions P(〈1|U†
1U2|1〉|) and P(|TrU

†
1U2|) for random matrices

U1 and U2 from two ensembles associated to different graphs.
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Concluding remarks

A quantized chaotic evolution sends an initial state |i〉 into a
’generic’ = random state |ψ〉.
Due to concentration of measure effect (Levy’s lemma) a value of
a function f of a random state is close to the mean value 〈f 〉.
Generic pure state of a bi-partite system is strongly entangled.
With any graph Γ we associate an ensemble of a) random pure
states and b) random unitary matrices.
Case a). Performing partial trace over a selected set A of
subsystems one obtains an ensemble of mixed states.

Their level density is related to the topology of the graph.
Universal Entanglement Area law: For any graph Γ and its
partition A and Ā he mean entanglement entropy of the random
pure state |ψ〉 depends on the area ∂A (the number of bonds cut).
Case b). Level spacing statistics P(s) for ensembles of random
unitary matrices associated to a connected graph has CUE properties.
More subtle statistics do depend on graph topology.

Potential application: graph isomorphism problem.
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