Classical Graphs
 Random Quantum States \& Unitary matrices

Karol Życzkowski

in collaboration with
Paweł Kondratiuk (Warsaw), Benoit Collins (Ottawa), Ion Nechita (Toulouse)

Institute of Physics, Jagiellonian University, Cracow and
Center for Theoretical Physics, PAS, Warsaw
Quantum Chaos Workshop, Warsaw, May 26, 2013

What is this talk about?

A non-relativistic quantum theory of finite systems

We study quantum correlations between subsystems.
Consider a quantum system S described in a finite dimensional complex Hilbert space \mathcal{H}_{d}.
Assume that the system S consists of m subsystems $S_{1}, S_{2}, \ldots, S_{m}$. Then the Hilbert space has the structure of an m-fold tensor product

$$
\mathcal{H}_{d}:=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{m}
$$

of dimension $d=N_{1} \times N_{2} \times \cdots \times N_{m}$.

Assume we do not know the quantum dynamics
What can be said about the quantum state which evolves unitarily in time,

$$
|\psi(t)\rangle=U(t)|\psi(0)\rangle ?
$$

Unitary Dynamics \& Quantum Chaos

'Quantum chaology': analogues of classically chaotic systems

Quantum analogues of classically chaotic dynamical systems can be described by random matrices
a). autonomous systems - Hamiltonians:

Gaussian ensembles of random Hermitian matrices, (GOE, GUE, GSE) b). periodic systems - evolution operators:

Dyson circular ensembles of random unitary matrices, (COE, CUE, CSE)

Universality classes

Depending on the symmetry properties of the system one uses ensembles form orthogonal $(\beta=1)$; unitary $(\beta=2)$ and symplectic $(\beta=4)$ ensembles.
The exponent β determines the level repulsion, $P(s) \sim s^{\beta}$ for $s \rightarrow 0$ where s stands for the (normalised) level spacing, $s_{i}=\phi_{i+1}-\phi_{i}$.
see e.g. F. Haake, Quantum Signatures of Chaos

Random Pure states in \mathcal{H}_{N}

'Quantum chaotic' dynamics (pseudo-random evolution)

described by a random unitary matrix U acting on a pure state produces (almost surely) a 'generic pure state' $|\psi\rangle=U\left|\phi_{0}\right\rangle$.

- Formally one defines an (unique) Fubini-Study measure μ on complex projective spaces which is unitarily invariant: for any (measurable) set A of states one requires $\mu(A)=\mu(U(A))$.
- This measure covers the entire space $\mathbb{C} P^{N-1}$ uniformly, and for $N=2$ it is just equivalent to the uniform, Lebesgue measure on the Bloch sphere S^{2}.

How to obtain a random pure state $|\psi\rangle$?
a) Take a column (a row) of a random unitary U so that $|\psi\rangle=U|i\rangle$.
b) generate N independent complex random numbers z_{i} according to the normal distribution. Write $|\psi\rangle=\sum_{i=1}^{N} c_{i}|i\rangle$ where the expansion coefficients read $c_{i}=z_{i} / \sqrt{\sum_{i}\left|z_{i}\right|^{2}}$.

One quantum state fixed, one random...

Fix an arbitrary state $\left|\psi_{1}\right\rangle$. Generate randomly the other state $\left|\psi_{2}\right\rangle$.

- What is the average angle χ between these states ?
- What is the distribution $P(\chi)$ of the angle $\chi:=\arccos \left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|$?

One quantum state fixed, one random...

Fix an arbitrary state $\left|\psi_{1}\right\rangle$. Generate randomly the other state $\left|\psi_{2}\right\rangle$.

- What is the average angle χ between these states ?
- What is the distribution $P(\chi)$ of the angle $\chi:=\arccos \left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|$?

Measure concentration phenomenon

'Fat hiper-equator' of the sphere S^{N} in $\mathbb{R}^{N+1} \ldots$
It is a consequence of the Jacobian factor for expressing the volume element of the N - sphere. Let $z=\cos \vartheta_{1}$, so that

$$
J \sim\left(\sin \vartheta_{1}\right)^{N-1} J_{2}\left(\vartheta_{2}, \ldots, \vartheta_{N}\right)
$$

Hence the typical angle χ is 'close' to $\pi / 2$ and two 'typical random states' are orthogonal and the distribution $P(\chi)$ is 'close' to $\delta(\chi-\pi / 2)$. How close?

Quantitative description of Measure Concentration

Levy's Lemma (on higher dimensional spheres)

Let $f: S^{N} \rightarrow \mathbb{R}$ be a Lipschitz function, with the constant η and the mean value $\langle f\rangle=\int_{S^{N}} f(x) d \mu(x)$.
Pick a point $x \in S^{N}$ at random from the sphere. For large N it is then unlikely to get a value of f much different then the average:

$$
P(|f(x)-\langle f\rangle|>\alpha) \leq 2 \exp \left(-\frac{(N+1) \alpha^{2}}{9 \pi^{3} \eta^{2}}\right)
$$

Simple application: the distance from the 'equator'

Take $f\left(x_{1}, \ldots x_{N+1}\right)=x_{1}$. Then Levy's Lemma says that the probability of finding a random point of S^{N} outside a band along the equator of width 2α converges exponentially to zero as $2 \exp \left[-C(N+1) \alpha^{2}\right]$.

As $N \gg 1$ then every equator of S^{N} is 'FAT'.

Composed systems \& entangled states

bi-partite systems: $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

- separable pure states: $|\psi\rangle=\left|\phi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle$
- entangled pure states: all states not of the above product form.

Two-qubit system: $d=2 \times 2=4$
Maximally entangled Bell state $\left|\varphi^{+}\right\rangle:=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Entanglement measures

For any pure state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ define its partial trace $\sigma=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|$. Definition: Entanglement entropy of $|\psi\rangle$ is equal to von Neumann entropy of the partial trace

$$
E(|\psi\rangle):=-\operatorname{Tr} \sigma \ln \sigma
$$

The more mixed partial trace, the more entangled initial pure state...

Generic pure states of a bi-partite system

'Two quNits' $=N \times N$ quantum system

The space $\mathbb{C} P^{N^{2}-1}$ of all states in $\mathcal{H}=\mathcal{H}_{N} \otimes \mathcal{H}_{N}$ has $d_{\text {tot }}=N^{2}-2$ dimensions.
The subspace of separable (product) states $\mathbb{C} P^{N-1} \times \mathbb{C} P^{N-1}$ has only $d_{\text {sep }}=2(N-2)$ dimensions. For large N we observe that $d_{\text {sep }} \sim 2 N \ll d_{\text {tot }} \sim N^{2}$ so the separable states form a set of measure zero in the space of all states.

Thus a 'typical' random state is entangled! How much entangled?

Mean entropy of the reduced density matrix ρ

Let us call $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Take any pure state $|\psi\rangle \in \mathcal{H}$ and define its partial trace $\rho:=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|=\operatorname{Tr}_{A}|\psi\rangle\langle\psi|$.
The von Neumann entropy S of the reduced mixed state ρ is a measure of entanglement of the initially pure bi-partite state $|\psi\rangle$.

Concentration of entropy of the partial trace

Consider an $N \times K$ system with $K \geq N$

The maximal entropy (achieved for $\rho_{*}=\mathbb{1}_{N} / N$) is equal to $S_{\max }:=\ln N$. Since the mean entropy, $\langle S\rangle_{\psi} \approx S_{\max }-\frac{N}{2 K}$, is close to the maximal value a concentration effect has to occur...

Levy's lemma and concentration of entanglement

Consider the sphere $S^{2 N K-1}$ which represents pure states of a $N \times K$ system with $K \geq N \geq 3$. Use Levy's lemma with $f=S(\rho)$. It implies

$$
P\left(S\left(\operatorname{Tr}_{B}|\psi\rangle\langle\psi|\right)<\ln N-N / K-\alpha\right) \leq \exp \left(-\frac{(N K-1)}{8(\pi \ln N)^{2}} \alpha^{2}\right)
$$

Hayden, Leung, Winter (2006)

Thus the reduced density matrix ρ is close to the maximally mixed state $\rho_{*}=\mathbb{1}_{N} / N$, while the initial random pure state is close to a maximally entangled state $\left|\psi^{+}\right\rangle$with entropy $S_{\text {max }}=\ln N$.

Graphs \& Quantum graphs

How a quantum graph looks like ?

Graphs \& Quantum graphs

How a quantum graph looks like ?

existing quantum graph by Leszek Sirko and his team in Warsaw

A different kind of quantum graphs discussed here:
Ensembles of
a) random quantum states
b) random unitary matrices
associated with a given graph.

Multi-partite systems:
 a) random states associated with a graph

Graph random states

Consider a graph Γ consisting of m edges $B_{1}, \ldots B_{m}$ and k vertices $V_{1}, \ldots V_{k}$. It represents a composite quantum system consisting of $2 m$ sub-systems described in the Hilbert space with $2 m$-fold tensor product $\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{2 m}$ of dimension $N^{2 m}$.
Each edge represents the maximally entangled state $\left|\Phi^{+}\right\rangle$in both subspaces, while each vertex represents a random unitary matrix U (Haar measure ='generic' Hamiltonian), coupling connected systems.

A simple example: three vertices \& two edges

We define a random state $|\psi\rangle=\left(\mathbf{U}_{\mathbf{1}} \otimes \mathbf{U}_{23} \otimes \mathbf{U}_{4}\right)\left|\boldsymbol{\Phi}_{12}^{+}\right\rangle \otimes\left|\boldsymbol{\Phi}_{34}^{+}\right\rangle$ where $\left|\Phi_{k j}^{+}\right\rangle$denotes the maximally entangled state in subspaces k, j.

Multi-partite graph systems: mixed states

Partial trace over certain subspaces

Consider an ensemble of random pure states $|\psi\rangle$ corresponding to a given graph Γ. Select a fixed subset T of subspaces and define a (random) mixed state $\rho(T)=\operatorname{Tr}_{T}|\psi\rangle\langle\psi|$.

Tasks

- Determine the spectral properties of the ensemble of mixed states $\rho(T)$ associated with the graph Γ.
- Find the mean entropy $\langle S(\rho)\rangle_{\psi}$ of the reduced state ρ averaged over the ensemble of graph random pure states $|\psi\rangle_{\Gamma, T}$.

Examples of partial trace for the graph 「

trace is taken over all the subspaces T represented by open symbols.

Graphs and random multi-partite systems

Partial trace over certain subspaces

For ensembles of random states associated with certain graphs 「 and selected subspaces T - cross (\times) - over which the partial trace takes place

one can compute moments of the traces $\mu_{q}:=\left\langle\operatorname{Tr} \rho^{q}\right\rangle_{\psi}$ and then obtain bounds for the average entropy $\langle S\rangle=\langle-\operatorname{Tr} \rho \ln \rho\rangle_{\psi}$.

Collins, Nechita, K.亡̇, J. Phys. A (2010)

Spectral properties of random mixed states I

Example 1: 2 bonds, 4 subsystems and one bi-partite interaction U_{0}
a) h_{0} - maximaly mixed state $\rho=\frac{1}{N} \mathbb{1}$ with entropy $S(\rho)=\ln N$

b) h_{1} random mixed state generated according to the induced measure

with entropy $S(\rho) \approx \ln N-1 / 2$
Let $|\psi\rangle=\sum_{i} \sum_{j} C_{i j}|i\rangle \otimes|j\rangle \quad$ be a random pure state.
Then C is a random matrix of Ginibre ensemble (not hermitian!)
consisting of independent complex Gaussian entries. The only constraint is its norm: since $\langle\psi \mid \psi\rangle=1$ then $|C|^{2}=\operatorname{Tr} C C^{\dagger}=1$.

What is the distribution of eigenvalues of a non-hermitian matrix C and of a positive Wishart matrix $\rho=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|=C^{\dagger}$?

Spectral properties of random matrices

Non-hermitian matrix C of size N of the Ginibre ensemble

Under normalization $\operatorname{Tr} C C^{\dagger}=N$ the spectrum of C fills uniformly (for large N !) the unit disk

The so-called circular law of Girko !

Hermitian, positive matrix $\rho=C C^{\dagger}$ of the Wishart ensemble
Let $x=N \lambda_{i}$, where $\left\{\lambda_{i}\right\}$ denotes the spectrum of ρ. As $\operatorname{Tr} \rho=1$ so $\langle x\rangle=1$. Distribution of the spectrum $P(x)$ is asymptotically given by the Marchenko-Pastur law

$$
h_{1}(x)=P_{\mathrm{MP}}(x)=\frac{1}{2 \pi} \sqrt{\frac{4}{x}-1} \text { for } x \in[0,4]
$$

Spectral properties of random mixed states II

Example 2: 4 bonds, 8 subsystems and four bi-partite interactions V_{i}
c) h_{2} random mixed state generated by the 4-cycle graph

After partial trace over crossed subsystems the random mixed state has the structure

$$
\rho=\alpha G_{2} G_{1} G_{1}^{\dagger} G_{2}^{\dagger}
$$

where G_{1} and G_{2} are independent Ginibre matrices and $\alpha=1 / \operatorname{Tr} G_{2} G_{1} G_{1}^{\dagger} G_{2}^{\dagger}$.

Mixed states with spectrum given by the
Fuss-Catalan distribution $h_{2}(x)$ characterized by mean entropy $S(\rho) \approx \ln N-5 / 6$

$$
P_{\mathrm{MP}}(x)=h_{1}(x) \text { and } h_{2}(x)
$$

Multi-partite systems: a lattice L

Partition of the lattice into two disjoint sets, $L=A \cup \bar{A}$

Consider lattice (graph), in which each vertex denotes a spin (different meaning than before!)
and each edge represents an interaction defined by a local Hamiltonian H.

Let A denotes a distinguished set of vertices while ∂A represents spins belonging to its area, i.e. these spins for which some edges are cut away.

Area law for a partition of the lattice $L=A \cup \bar{A}$

Consider an eigenstate $|\psi\rangle$ of the Hamiltonian H, define set of spins A and take the partial trace of the pure state over all spins belonging to the complementary set \bar{A}.

- Von Neumann entropy of the resulting mixed state $\rho:=\operatorname{Tr}_{\bar{A}}|\psi\rangle\langle\psi|$ is proportional to the area ∂A of the distinguished subset A. Hence entanglement of the state $|\psi\rangle$ with respect to the partition $A \cup \bar{A}$ behaves as the area ∂A.

Eisert, Cramer, Plenio 2008, Rev. Mod. Phys. 2008

Universal Entanglement Area Law

Area law for random graph states

Theorem. Consider a graph Γ and its partition into two sets A and \bar{A}. Let $|\psi\rangle$ be a random graph pure state and $\rho:=\operatorname{Tr}_{\bar{A}}|\psi\rangle\langle\psi|$.
Then the mean entropy of ρ (entanglement entropy of $|\psi\rangle$) is proportional to the number M of bonds cut ('area' of A),

$$
\langle\mathbf{S}(\rho)\rangle_{\psi}=\mathbf{M} \ln \mathbf{N}+\mathbf{O}(\mathbf{1})
$$

Example: graph with 10 bonds, $M=5$ of them cut

The area law $S(\rho) \approx 5 \ln N$ is universal - no dependence on the choice of interaction in the vertices.
Only the topology of the interaction matters!
B. Collins, I. Nechita, K. Ż., arXiv:1302.0709 (2013)

b) Structured random unitaries related to a graph

Two-step time evolution - for a system in $\mathcal{H}_{N^{2} m}$

Let Γ be a graph consisting of k vertices $V_{1}, \ldots V_{k}$ and m bonds $B_{1} \ldots B_{m}$. The corresponding ensemble of random unitary matrices of size $N^{2 m}$ reads

$$
U=V W=\left(V_{a} \otimes \cdots \otimes V_{k}\right)\left(W_{\alpha} \otimes \cdots \otimes W_{\mu}\right)
$$

where V_{i} and W_{ν} denote CUE random unitaries representing interaction in the vertices and along the bonds, respectively.

Attention: symbols \otimes here and \otimes here represent tensor product with respect to different spliting of the Hilbert space!

Example: triangle graph with $m=3$ bonds and $k=3$ vertices

Results: some properties of the graph ensembles

Level spacing distribution $P(s)$ for structured random unitaries

For disconnected graph: Poissonian statistics, $P(s)=\exp (-s)$
Explanation: for large dimension tensor product $U_{1} \otimes U_{2}$ of two CUE matrices displays Poissonian level statistics
T. Tkocz, M. Smaczyński, M. Kuś, O. Zeituni, K.Życzkowski (2012)

For connected graph: Wigner-like CUE -like statistics

$$
P(s) \approx \frac{32}{\pi^{2}} s^{2} \exp \left(-\frac{4}{\pi} s^{2}\right)
$$

Distribution of matrix elements

Statistics of matrix elements, e.g. the elements entropy

$$
H_{e l}(U):=-\left.\frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{M}\left|U_{i j}^{2} \ln \right| U_{i j}\right|^{2}
$$

differs from CUE matrices of size $M=N^{2 m}$

Distribution of eigenvectors

Statistics of eigenvectors elements, e.g. the eigenvector entropy

$$
H_{e l}(U):=-\frac{1}{M} \sum_{v} \sum_{j=1}^{M}\left|v_{j}\right|^{2} \ln \left|v_{j}\right|^{2}
$$

behaves like for CUE random matrices of size $M=N^{2 m}$

"Cheap" method to generate random CUE matrices of size $M=n^{k}$ out of k smaller CUE matrices of size n^{2}
$U=V W=\left(V_{23} \otimes V_{45} \otimes \cdots \otimes V_{k, 1}\right)\left(W_{12} \otimes W_{34} \otimes \cdots \otimes W_{\underline{k}-1, k}\right)$.

Topology of the graph

 and corresponding ensembles of random matricesSearch for statistical properties of ensembles depending on the topology of the graph
Motivation:

Isomorphic graphs problem:

For two (classical) graphs Γ_{1} and Γ_{2}, with the same number of vertices and bonds, check, whether these graphs are isomorphic, $\Gamma_{1} \sim \Gamma_{2}$?

Distributions $P\left(\langle 1| U_{1}^{\dagger} U_{2}|1\rangle \mid\right)$ and $P\left(\left|\operatorname{Tr} U_{1}^{\dagger} U_{2}\right|\right)$ for random matrices U_{1} and U_{2} from two ensembles associated to different graphs.

Concluding remarks

- A quantized chaotic evolution sends an initial state $|i\rangle$ into a 'generic' $=$ random state $|\psi\rangle$.
- Due to concentration of measure effect (Levy's lemma) a value of a function f of a random state is close to the mean value $\langle f\rangle$.
- Generic pure state of a bi-partite system is strongly entangled.
- With any graph 「 we associate an ensemble of a) random pure states and b) random unitary matrices.
- Case a). Performing partial trace over a selected set A of subsystems one obtains an ensemble of mixed states.

Their level density is related to the topology of the graph.

- Universal Entanglement Area law: For any graph 「 and its partition A and \bar{A} he mean entanglement entropy of the random pure state $|\psi\rangle$ depends on the area ∂A (the number of bonds cut).
- Case b). Level spacing statistics $P(s)$ for ensembles of random unitary matrices associated to a connected graph has CUE properties.
- More subtle statistics do depend on graph topology.

Potential application: graph isomorphism problem.

