Many-body Anderson localization in 1D

D. Delande¹, K. Sacha², M. Płodzień², S. Avazbaev^{1,3}, Jakub Zakrzewski²

¹Laboratoire Kastler-Brossel, Université P. et M. Curie-Paris 6, Paris
²Instytut Fizyki im. M. Smoluchowskiego, Universytet Jagielloński, Kraków, Poland

³ARC Centre for Antimatter-Matter Studies, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia

May 25, 2013

Déjà vu?-- Anderson localization of a BEC (2009)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

D. Delande, C. A. Müller, J. Zakrzewski, K. Sacha

Effective one body (EOB) approach

This work - full many body solution

Support: National Science Center (Poland) DEC-2012/04/A/ST2/00088

Scope:

- Anderson localization of a BEC experiments.
- Bright solitons in a BEC.
- Anderson localization of bright solitons- EOB approach.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Many-body Anderson localization.
- Conclusions.

Anderson localization of a BEC Experiments

$$\left[-\frac{1}{2}\partial_z^2 + V(z) + g|\phi(z)|^2\right]\phi(z) = \mu \phi(z), \qquad \langle \phi|\phi \rangle = N$$

Experiments in the non-interacting limit...

J. Billy et al., Nature 453, 891 (2008) G. Roati et al., Nature 453, 895 (2008)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Gross-Pitaevskii equation:

z

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Yet full exact many-body solution - uniform

Gross-Pitaevskii equation:

$$\begin{bmatrix} -\frac{1}{2}\partial_z^2 + g|\phi_0|^2 \end{bmatrix} \phi_0 = \mu\phi_0, \qquad g < 0 \qquad \langle \phi | \phi \rangle = N$$

$$\phi_0(z - q) = \sqrt{\frac{N}{2\xi}} \frac{\exp(-i\theta)}{\cosh\left(\frac{z-q}{\xi}\right)},$$

$$\xi = \frac{-2}{Ng} \qquad \mu = -\frac{N^2g^2}{8}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Yet full exact many-body solution - uniform

The position of the center of mass should be treated quantum mechanically.

q - position operator for N particle soliton.

The effective Hamiltonian

If we add weak disorder potential V(z), the effective Hamiltonian describing center of mass motion reads:

$$\hat{H}_{\mathrm{eff}} pprox rac{p^2}{2N} + \int dz \ V(z) \ |\phi_0(z-q)|^2 \,.$$

Simple arguments:

Substitution of a time-dependent bright soliton solution $\sim e^{ipz}\phi_0(z-q)$ to the energy functional

$$E = \int dz \left[\frac{1}{2} |\partial_z \phi|^2 + \frac{g}{2} |\phi|^4 - \mu |\phi|^2 + \frac{V(z)}{|\phi|^2} \right] = \frac{p^2}{2N} + \int dz V |\phi_0(z-q)|^2$$

The effective Hamiltonian

• Bogoliubov theory: (J. Dziarmaga, (2004) for V = 0)

$$\hat{H} \approx \sum_{n,E_n>0} E_n \hat{b}_n^{\dagger} \hat{b}_n + \frac{\hat{p}^2}{2N} + \int dz \ V(z) \ |\phi_0(z-q)|^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$N V_0 \ll E_1 = |\mu| = \frac{N^2 g^2}{8},$$

The effective Hamiltonian

• Bogoliubov theory: (J. Dziarmaga, (2004) for V = 0)

$$\hat{H} \approx \sum_{n,E_n>0} E_n \ \hat{b}_n^{\dagger} \ \hat{b}_n + \frac{\hat{p}^2}{2N} + \int dz \ V(z) \ |\phi_0(z-q)|^2.$$

 $N \ V_0 \ \ll \ E_1 = |\mu| = \frac{N^2 g^2}{8},$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Weak perturbation cannot populate internal excited states of the soliton.

Shape preserved

Anderson localization

- V(z) is optical speckle potential with correlation length $\sigma_0 \ll \xi$.
- To the second order (Born approximation) in the potential strength V_0 , inverse localization length, valid for $\gamma(k) \ll k$,

$$\gamma(k) \approx \frac{N^2}{k^2} \pi \sigma_0 V_0^2 \left(\frac{N\pi k\xi}{\sinh(\pi k\xi)}\right)^2$$

(日)

Anderson localization

- V(z) is optical speckle potential with correlation length σ₀ ≪ ξ.
- To the second order (Born approximation) in the potential strength V_0 , inverse localization length, valid for $\gamma(k) \ll k$,

$$\gamma(k) \approx \frac{N^2}{k^2} \pi \sigma_0 V_0^2 \left(\frac{N\pi k\xi}{\sinh(\pi k\xi)}\right)^2$$

Proposal for an experiment

• Suppose we prepare soliton in a harmonic trap $\frac{1}{\sqrt{\omega_z}} \gg \xi$,

$$| ilde{\psi}(k)|^2 = rac{1}{\sqrt{\pi N \omega_z}} e^{-k^2/N \omega_z}$$

Long-time density averaged over disorder realizations

$$\overline{|\psi(q)|^2} = rac{1}{2} \int dk \ \gamma \ e^{-\gamma |q|} \ | ilde{\psi}(k)|^2 \ \sim \ rac{1}{|q|}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposal for an experiment

• Suppose we prepare soliton in a harmonic trap $\frac{1}{\sqrt{\omega_z}} \gg \xi$,

$$| ilde{\psi}(k)|^2 = rac{1}{\sqrt{\pi N \omega_z}} e^{-k^2/N \omega_z}$$

Long-time density averaged over disorder realizations

$$\overline{|\psi(q)|^2} = rac{1}{2} \int dk \ \gamma \ e^{-\gamma |q|} \ | ilde{\psi}(k)|^2 \ \sim \ rac{1}{|q|}$$

$$\omega_{\perp} = 2\pi \cdot 5000 \text{ Hz}$$

$$\omega_z = 2\pi \cdot 64 \text{ Hz}$$

$$N=100 \text{ Li}^7 \text{ atoms}$$

$$\xi = 1 \ \mu\text{m}$$

$$\sigma_0 = 0.27 \ \mu\text{m}$$

$$NV_0 = 10^{-2}|\mu|$$

$$t = 5 \text{ s}$$

900

Many-body approach to Anderson localization

Any many body effect omitted in the former effective CM quantization approach could destroy the phase coherence and the wavefunction.

Need for a full many body test

$$\hat{H} = \int dz \; \hat{\psi}^{\dagger}(z) \left[-\frac{1}{2} \; \frac{\partial^2}{\partial z^2} + V(z) \right] \hat{\psi}(z) + \frac{g}{2} \int dz \; \hat{\psi}^{\dagger}(z) \; \hat{\psi}^{\dagger}(z) \; \hat{\psi}(z) \; \hat{\psi}(z) \; \hat{\psi}(z)$$

Discretization (3-point kinetic energy) gives Bose-Hubbard Hamiltonian:

$$H = \sum_{l} \left[-J(a_{l}^{\dagger}a_{l+1} + h.c.) + \frac{U}{2}a_{l}^{\dagger}a_{l}^{\dagger}a_{l}a_{l} + V_{l}a_{l}^{\dagger}a_{l}\right]$$

 $J = rac{1}{2\delta^2}$, $U = rac{g}{\delta}$ and $V_l = V(z_l)$, $z_l = l\delta$

B. Schmidt and M. Fleischhauer, Phys. Rev. A75 (2007)

Many-body approach to Anderson localization Technicalities

- space restricted to 2K + 1 = 1921 points $[-K\delta, K\delta]$
- Matrix product state (MPS) cvariational representation

$$|\psi\rangle = \sum_{\alpha_1,\ldots,\alpha_M; \ i_1,\ldots,i_M} \Gamma_{1\alpha_1}^{[1],i_1} \lambda_{\alpha_1}^{[1]} \Gamma_{\alpha_1\alpha_2}^{[2],i_2} \ldots \Gamma_{\alpha_{n-1}1}^{[M],i_M} |i_1,\ldots,i_M\rangle$$

 $\Gamma^{[\mathit{I}],\mathit{i_{l}}}$ - site dependent tensors, $\lambda^{[\mathit{I}]}$ - bond vectors

- We find a quasi-exact many body ground state bright soliton in a shallow trap (imaginary time propagation TEBD)
- Trap is removed, disorder turned on, real time propagation with TEBD
- Reliable calculations for N = 25 particles

D. Delande et al., New. J. Phys. (2013)

Many-body approach to Anderson localization Technicalities

- Unit of length soliton size ξ Unit of time ξ^2
- Initial harmonic oscillator $\omega = 0.025/\xi^2$ (not to disturb the soliton shape yet to confine CM to a distance slightly larger than ξ)
- strength of the random potential comparable to soliton energy $\omega/4$ i.e. $V_0=2.5\times 10^{-4}$
- correlation of the disorder $\sigma_0 = 0.4\xi$
- discretization $\delta = \xi/5$ tests on smaller...
- time step (Trotter errors!) $dt = 0.008\xi^2$
- $N_{max} = 14$ (needed!) despite $N\delta/2\xi = 2.5$ for N = 25
- $\chi = 30$ (small possible) dimension per site 450 (1921 sites)

Many-body approach to Anderson localization Tests

- χ, N_{max}, dt,
- entropy of entanglement growth

Many-body approach to Anderson localization Results

• Atomic density in time

<ロ> (四) (四) (三) (三) (三) (三)

96 realizations of disorder

Many-body approach to Anderson localization Results

• One body density matrix $\langle \psi^{\dagger}(z)\psi(z')
angle$

Transverse width $\approx \xi$. Largest eigenvalue = condensate fraction =0.14!

Many-body approach to Anderson localization Results

• One body density matrix $\langle \psi^{\dagger}(z)\psi(z')
angle$

Transverse width $\approx \xi$. Largest eigenvalue = condensate fraction =0.14.

Many-body approach to Anderson localization Simulation of the measurement

- From MPS repesentation $ightarrow
 ho^{[l]}$ by contraction of tensors..
- Choose n_l according to the statistical distribution
- Project MPS on subspace with that n_l on l site and normalize
- Repeat scanning other sites till reaching N

Many-body approach to Anderson localization Comparison with effective one body of 2009

• Let us compare CM densities coming from both approaches

・ロト ・聞 ト ・ヨト ・ヨト

э

Conclusions:

- AL for attractive interactions in 1D disorder
- Excellent agreement between full many body and EOB description
- Full simulation of the experiment including the measurements possible.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <