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Scope:

Anderson localization of a BEC — experiments.

Bright solitons in a BEC.

Anderson localization of bright solitons- EOB approach.
Many-body Anderson localization.

Conclusions.



Anderson localization of a BEC

Experiments
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Experiments in the non-interacting limit...
J. Billy et al., Nature 453, 891 (2008) G. Roati et al., Nature 453, 895 (2008)



Bright solitons in a BEC

Gross-Pitaevskii equation:
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Yet full exact many-body solution - uniform



Bright solitons in a BEC

Gross-Pitaevskii equation:
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Yet full exact many-body solution - uniform

The position of the center of mass should be treated quantum
mechanically.

g - position operator for N particle soliton.



Bright soliton in a BEC

The effective Hamiltonian

If we add weak disorder potential V/(z), the effective Hamiltonian
describing center of mass motion reads:
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Ao ~ 2PTV +/ dz V(z) |¢o(z — q)|?-

e Simple arguments:

Substitution of a time-dependent bright soliton solution
~ e'P?¢o(z — q) to the energy functional
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Bright solitons in a BEC

The effective Hamiltonian

e Bogoliubov theory:
( J. Dziarmaga, (2004) for V =0)
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Bright solitons in a BEC

The effective Hamiltonian

e Bogoliubov theory:
( J. Dziarmaga, (2004) for V =10)
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Weak perturbation cannot populate internal excited states of the
soliton.
Shape preserved

N Ve < Ep = |u| =




Bright solitons in a BEC

Anderson localization

e V/(z) is optical speckle potential with correlation length o¢ < €.

e To the second order (Born approximation) in the potential strength
Vo, inverse localization length, valid for (k) < k,
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Bright solitons in a BEC

Anderson localization

e V/(z) is optical speckle potential with correlation length o¢ < €.

e To the second order (Born approximation) in the potential strength
Vo, inverse localization length, valid for (k) < k,

N2 Nrké \?
k) ~ g mo0Vs (sinh?wk{))
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NVo = 1072|p|, oo = 0.3¢, N = 100



Bright solitons in a BEC

Proposal for an experiment

e Suppose we prepare soliton in a harmonic trap J% > &,
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averaged density

Bright solitons in a BEC

Proposal for an experiment
e Suppose we prepare soliton in a harmonic trap J% > ¢,
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Many-body approach to Anderson localization

Motivation

Any many body effect omitted in the former effective CM
quantization approach could destroy the phase coherence and the
wavefunction.

Need for a full many body test
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Discretization (3-point kinetic energy) gives Bose-Hubbard Hamiltonian:
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J=s5 U=%and Vi=V(z), z1=10

B. Schmidt and M. Fleischhauer, Phys. Rev. A75 (2007)



Many-body approach to Anderson localization

Technicalities

e space restricted to 2K + 1 = 1921 points [—Kd, K9]

e Matrix product state (MPS) cvariational representation

W)= 3 TR r O i)
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i site dependent tensors, Al - bond vectors

e We find a quasi-exact many body ground state — bright
soliton in a shallow trap (imaginary time propagation TEBD)

e Trap is removed, disorder turned on, real time propagation
with TEBD

e Reliable calculations for N = 25 particles

D. Delande et al., New. J. Phys. (2013)



Many-body approach to Anderson localization

Technicalities

Unit of length — soliton size & — Unit of time &2

Initial harmonic oscillator w = 0.025/£2 (not to disturb the
soliton shape yet to confine CM to a distance slightly larger
than &)

strength of the random potential comparable to soliton energy
w/bie Vo=25x10"*

correlation of the disorder og = 0.4¢

discretization § = £/5 tests on smaller...

time step (Trotter errors!) dt = 0.008¢2

Nmax = 14 (needed!) despite N§ /2§ = 2.5 for N = 25

x = 30 (small possible) dimension per site 450 (1921 sites)



Many-body approach to Anderson localization
Tests

o x, Npmax, dt, ...
e entropy of entanglement growth
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Many-body approach to Anderson localization

Results
e Atomic density in time
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Many-body approach to Anderson localization

Results

e One body density matrix (1f(z)(2'))
60
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2/€
Transverse width = £. Largest eigenvalue = condensate fraction
=0.14!



Many-body approach to Anderson localization

Results
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Many-body approach to Anderson localization

Simulation of the measurement

e From MPS repesentation — pl/l by contraction of tensors..

e Choose n; according to the statistical distribution

e Project MPS on subspace with that n; on / site and normalize
e Repeat scanning other sites till reaching N
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Many-body approach to Anderson localization
Comparison with effective one body of 2009

e Let us compare CM densities coming from both approaches
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Conclusions:

e AL for attractive interactions in 1D disorder

e Excellent agreement between full many body and EOB
description

e Full simulation of the experiment including the measurements
possible.



