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Jakub Zakrzewski2

1Laboratoire Kastler-Brossel, Université P. et M. Curie-Paris 6, Paris
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Effective one body (EOB) approach

This work - full many body solution
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Scope:

• Anderson localization of a BEC – experiments.

• Bright solitons in a BEC.

• Anderson localization of bright solitons- EOB approach.

• Many-body Anderson localization.

• Conclusions.



Anderson localization of a BEC
Experiments[

−1

2
∂2
z + V (z) + g |φ(z)|2

]
φ(z) = µ φ(z), 〈φ|φ〉 = N

Experiments in the non-interacting limit...
J. Billy et al., Nature 453, 891 (2008) G. Roati et al., Nature 453, 895 (2008)



Bright solitons in a BEC

Gross-Pitaevskii equation:[
−1

2
∂2
z + g |φ0|2

]
φ0 = µφ0, g < 0 〈φ|φ〉 = N

φ0(z − q) =

√
N

2ξ

exp(−iθ)

cosh
(

z−q
ξ

) ,
ξ =
−2

Ng
µ = −N2g2

8

Yet full exact many-body solution - uniform

The position of the center of mass should be treated quantum
mechanically.
q - position operator for N particle soliton.
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Bright soliton in a BEC
The effective Hamiltonian

If we add weak disorder potential V (z), the effective Hamiltonian
describing center of mass motion reads:

Ĥeff ≈
p2

2N
+

∫
dz V (z) |φ0(z − q)|2 .

• Simple arguments:

Substitution of a time-dependent bright soliton solution
∼ e ipzφ0(z − q) to the energy functional

E =

∫
dz

[
1

2
|∂zφ|2 +

g

2
|φ|4 − µ|φ|2 + V (z)|φ|2

]
=

p2

2N
+

∫
dzV |φ0(z−q)|2



Bright solitons in a BEC
The effective Hamiltonian

• Bogoliubov theory:
( J. Dziarmaga, (2004) for V = 0 )

Ĥ ≈
∑

n,En>0

En b̂†n b̂n +
p̂2

2N
+

∫
dz V (z) |φ0(z − q)|2.

N V0 � E1 = |µ| =
N2g2

8
,

Weak perturbation cannot populate internal excited states of the
soliton.
Shape preserved
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Bright solitons in a BEC
Anderson localization

• V (z) is optical speckle potential with correlation length σ0 � ξ.

• To the second order (Born approximation) in the potential strength
V0, inverse localization length, valid for γ(k)� k,

γ(k) ≈ N2

k2
πσ0V

2
0

(
Nπkξ

sinh(πkξ)

)2

NV0 = 10−2|µ|, σ0 = 0.3ξ, N = 100
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Bright solitons in a BEC
Proposal for an experiment

• Suppose we prepare soliton in a harmonic trap 1√
ωz
� ξ,

|ψ̃(k)|2 =
1√
πNωz

e−k
2/Nωz

• Long-time density averaged over disorder realizations

|ψ(q)|2 =
1

2

∫
dk γ e−γ|q| |ψ̃(k)|2 ∼ 1

|q|

ω⊥ = 2π · 5000 Hz
ωz = 2π · 64 Hz
N=100 Li7 atoms
ξ = 1 µm
σ0 = 0.27 µm
NV0 = 10−2|µ|
t = 5 s
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Many-body approach to Anderson localization
Motivation

Any many body effect omitted in the former effective CM
quantization approach could destroy the phase coherence and the
wavefunction.
Need for a full many body test

Ĥ =

∫
dz ψ̂†(z)

[
−1

2

∂2

∂z2
+ V (z)

]
ψ̂(z) +

g

2

∫
dz ψ̂†(z) ψ̂†(z) ψ̂(z) ψ̂(z)

Discretization (3-point kinetic energy) gives Bose-Hubbard Hamiltonian:

H =
∑
l

[
−J(a†l al+1 + h.c .) +

U

2
a†l a
†
l alal + Vl a

†
l al

]
J = 1

2δ2 , U = g
δ and Vl = V (zl), zl = lδ

B. Schmidt and M. Fleischhauer, Phys. Rev. A75 (2007)



Many-body approach to Anderson localization
Technicalities

• space restricted to 2K + 1 = 1921 points [−Kδ,Kδ]

• Matrix product state (MPS) cvariational representation

|ψ〉=
∑

α1,...,αM ; i1,...,iM

Γ
[1],i1
1α1

λ[1]
α1

Γ[2],i2
α1α2

. . . Γ
[M],iM
αn−11 |i1, . . . , iM〉

Γ[l ],il - site dependent tensors, λ[l ] - bond vectors

• We find a quasi-exact many body ground state – bright
soliton in a shallow trap (imaginary time propagation TEBD)

• Trap is removed, disorder turned on, real time propagation
with TEBD

• Reliable calculations for N = 25 particles

D. Delande et al., New. J. Phys. (2013)



Many-body approach to Anderson localization
Technicalities

• Unit of length – soliton size ξ – Unit of time ξ2

• Initial harmonic oscillator ω = 0.025/ξ2 (not to disturb the
soliton shape yet to confine CM to a distance slightly larger
than ξ)

• strength of the random potential comparable to soliton energy
ω/4 i.e. V0 = 2.5× 10−4

• correlation of the disorder σ0 = 0.4ξ

• discretization δ = ξ/5 tests on smaller...

• time step (Trotter errors!) dt = 0.008ξ2

• Nmax = 14 (needed!) despite Nδ/2ξ = 2.5 for N = 25

• χ = 30 (small possible) dimension per site 450 (1921 sites)



Many-body approach to Anderson localization
Tests

• χ, Nmax , dt, ....
• entropy of entanglement growth

S = sup
l

Sl = sup
l

[
−
∑
α

(λ[l ]
α )2 ln(λ[l ]

α )2

]

96 realizations of disorder.



Many-body approach to Anderson localization
Results

• Atomic density in time

96 realizations of disorder



Many-body approach to Anderson localization
Results

• One body density matrix 〈ψ†(z)ψ(z ′)〉

Transverse width ≈ ξ. Largest eigenvalue = condensate fraction
=0.14!
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Many-body approach to Anderson localization
Simulation of the measurement

• From MPS repesentation → ρ[l ] by contraction of tensors..

• Choose nl according to the statistical distribution

• Project MPS on subspace with that nl on l site and normalize

• Repeat scanning other sites till reaching N



Many-body approach to Anderson localization
Comparison with effective one body of 2009

• Let us compare CM densities coming from both approaches

96 versus 10 000 realizations of disorder for EOB. Dotted 1/q.



Conclusions:

• AL for attractive interactions in 1D disorder

• Excellent agreement between full many body and EOB
description

• Full simulation of the experiment including the measurements
possible.


