Many-body Anderson localization in 1D

D. Delande ${ }^{1}$, K. Sacha ${ }^{2}$, M. Płodzień ${ }^{2}$, S. Avazbaev ${ }^{1,3}$, Jakub Zakrzewski ${ }^{2}$
${ }^{1}$ Laboratoire Kastler-Brossel, Université P. et M. Curie-Paris 6, Paris
${ }^{2}$ Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, Kraków, Poland
${ }^{3}$ ARC Centre for Antimatter-Matter Studies, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845, Australia

May 25, 2013

Déjà vu?-- Anderson localization of a BEC (2009)

D. Delande, C. A. Müller, J. Zakrzewski, K. Sacha

Effective one body (EOB) approach
This work - full many body solution

Support: National Science Center (Poland)
DEC-2012/04/A/ST2/00088

Scope:

- Anderson localization of a BEC - experiments.
- Bright solitons in a BEC.
- Anderson localization of bright solitons- EOB approach.
- Many-body Anderson localization.
- Conclusions.

Anderson localization of a BEC

Experiments

$$
\left[-\frac{1}{2} \partial_{z}^{2}+V(z)+g|\phi(z)|^{2}\right] \phi(z)=\mu \phi(z), \quad\langle\phi \mid \phi\rangle=N
$$

Experiments in the non-interacting limit...
J. Billy et al., Nature 453, 891 (2008)
G. Roati et al., Nature 453, 895 (2008)

Bright solitons in a BEC

Gross-Pitaevskii equation:

$$
\begin{array}{rr}
{\left[-\frac{1}{2} \partial_{z}^{2}+g\left|\phi_{0}\right|^{2}\right] \phi_{0}=\mu \phi_{0},} & g<0 \\
\phi_{0}(z-q)=\sqrt{\frac{N}{2 \xi}} \frac{\exp (-i \theta)}{\cosh \left(\frac{z-q}{\xi}\right)}, & \\
\xi=\frac{-2}{N g} \quad \mu=-\frac{N^{2} g^{2}}{8} &
\end{array}
$$

Yet full exact many-body solution - uniform

Bright solitons in a BEC

Gross-Pitaevskii equation:

$$
\begin{array}{rr}
{\left[-\frac{1}{2} \partial_{z}^{2}+g\left|\phi_{0}\right|^{2}\right] \phi_{0}=\mu \phi_{0},} & g<0 \\
\phi_{0}(z-q)=\sqrt{\frac{N}{2 \xi}} \frac{\exp (-i \theta)}{\cosh \left(\frac{z-q}{\xi}\right)}, & \\
\xi=\frac{-2}{N g} \quad \mu=-\frac{N^{2} g^{2}}{8} &
\end{array}
$$

Yet full exact many-body solution - uniform
The position of the center of mass should be treated quantum mechanically.
q - position operator for N particle soliton.

Bright soliton in a BEC

The effective Hamiltonian

If we add weak disorder potential $V(z)$, the effective Hamiltonian describing center of mass motion reads:

$$
\hat{H}_{\mathrm{eff}} \approx \frac{p^{2}}{2 N}+\int d z V(z)\left|\phi_{0}(z-q)\right|^{2}
$$

- Simple arguments:

Substitution of a time-dependent bright soliton solution $\sim e^{i p z} \phi_{0}(z-q)$ to the energy functional

$$
E=\int d z\left[\frac{1}{2}\left|\partial_{z} \phi\right|^{2}+\frac{g}{2}|\phi|^{4}-\mu|\phi|^{2}+V(z)|\phi|^{2}\right]=\frac{p^{2}}{2 N}+\int d z V\left|\phi_{0}(z-q)\right|^{2}
$$

Bright solitons in a BEC

The effective Hamiltonian

- Bogoliubov theory:
(J. Dziarmaga, (2004) for $V=0$)

$$
\hat{H} \approx \sum_{n, E_{n}>0} E_{n} \hat{b}_{n}^{\dagger} \hat{b}_{n}+\frac{\hat{p}^{2}}{2 N}+\int d z V(z)\left|\phi_{0}(z-q)\right|^{2} .
$$

$$
N V_{0} \ll E_{1}=|\mu|=\frac{N^{2} g^{2}}{8},
$$

Bright solitons in a BEC

The effective Hamiltonian

- Bogoliubov theory: (J. Dziarmaga, (2004) for $V=0$)

$$
\hat{H} \approx \sum_{n, E_{n}>0} E_{n} \hat{b}_{n}^{\dagger} \hat{b}_{n}+\frac{\hat{p}^{2}}{2 N}+\int d z V(z)\left|\phi_{0}(z-q)\right|^{2} .
$$

$$
N V_{0} \ll E_{1}=|\mu|=\frac{N^{2} g^{2}}{8},
$$

Weak perturbation cannot populate internal excited states of the soliton.
Shape preserved

Bright solitons in a BEC

Anderson localization

- $V(z)$ is optical speckle potential with correlation length $\sigma_{0} \ll \xi$.
- To the second order (Born approximation) in the potential strength V_{0}, inverse localization length, valid for $\gamma(k) \ll k$,

$$
\gamma(k) \approx \frac{N^{2}}{k^{2}} \pi \sigma_{0} V_{0}^{2}\left(\frac{N \pi k \xi}{\sinh (\pi k \xi)}\right)^{2}
$$

Bright solitons in a BEC

Anderson localization

- $V(z)$ is optical speckle potential with correlation length $\sigma_{0} \ll \xi$.
- To the second order (Born approximation) in the potential strength V_{0}, inverse localization length, valid for $\gamma(k) \ll k$,

$$
\gamma(k) \approx \frac{N^{2}}{k^{2}} \pi \sigma_{0} V_{0}^{2}\left(\frac{N \pi k \xi}{\sinh (\pi k \xi)}\right)^{2}
$$

$$
N V_{0}=10^{-2}|\mu|, \sigma_{0}=0.3 \xi, N=100
$$

Bright solitons in a BEC

Proposal for an experiment

- Suppose we prepare soliton in a harmonic trap $\frac{1}{\sqrt{\omega_{z}}} \gg \xi$,

$$
|\tilde{\psi}(k)|^{2}=\frac{1}{\sqrt{\pi N \omega_{z}}} e^{-k^{2} / N \omega_{z}}
$$

- Long-time density averaged over disorder realizations

$$
\overline{|\psi(q)|^{2}}=\frac{1}{2} \int d k \gamma e^{-\gamma|q|}|\tilde{\psi}(k)|^{2} \sim \frac{1}{|q|}
$$

Bright solitons in a BEC

Proposal for an experiment

- Suppose we prepare soliton in a harmonic trap $\frac{1}{\sqrt{\omega_{z}}} \gg \xi$,

$$
|\tilde{\psi}(k)|^{2}=\frac{1}{\sqrt{\pi N \omega_{z}}} e^{-k^{2} / N \omega_{z}}
$$

- Long-time density averaged over disorder realizations

$$
\overline{|\psi(q)|^{2}}=\frac{1}{2} \int d k \gamma e^{-\gamma|q|}|\tilde{\psi}(k)|^{2} \sim \frac{1}{|q|}
$$

$$
\begin{aligned}
& \omega_{\perp}=2 \pi \cdot 5000 \mathrm{~Hz} \\
& \omega_{z}=2 \pi \cdot 64 \mathrm{~Hz} \\
& N=100 \mathrm{Li}^{7} \text { atoms } \\
& \xi=1 \mu \mathrm{~m} \\
& \sigma_{0}=0.27 \mu \mathrm{~m} \\
& N V_{0}=10^{-2}|\mu| \\
& t=5 \mathrm{~s}
\end{aligned}
$$

Many-body approach to Anderson localization

Motivation

Any many body effect omitted in the former effective CM quantization approach could destroy the phase coherence and the wavefunction.
Need for a full many body test

$$
\hat{H}=\int d z \hat{\psi}^{\dagger}(z)\left[-\frac{1}{2} \frac{\partial^{2}}{\partial z^{2}}+V(z)\right] \hat{\psi}(z)+\frac{g}{2} \int d z \hat{\psi}^{\dagger}(z) \hat{\psi}^{\dagger}(z) \hat{\psi}(z) \hat{\psi}(z)
$$

Discretization (3-point kinetic energy) gives Bose-Hubbard Hamiltonian:

$$
\begin{aligned}
& \qquad H=\sum_{l}\left[-J\left(a_{l}^{\dagger} a_{l+1}+\text { h.c. }\right)+\frac{U}{2} a_{l}^{\dagger} a_{l}^{\dagger} a_{l} a_{l}+V_{l} a_{l}^{\dagger} a_{l}\right] \\
& J=\frac{1}{2 \delta^{2}}, U=\frac{g}{\delta} \text { and } V_{l}=V\left(z_{l}\right), z_{l}=I \delta \\
& \text { B. Schmidt and M. Fleischhauer, Phys. Rev. A75 (2007) }
\end{aligned}
$$

Many-body approach to Anderson localization

Technicalities

- space restricted to $2 K+1=1921$ points $[-K \delta, K \delta]$
- Matrix product state (MPS) cvariational representation

$$
|\psi\rangle=\sum \quad \Gamma_{1 \alpha_{1}}^{[1], i_{1}} \lambda_{\alpha_{1}}^{[1]} \Gamma_{\alpha_{1} \alpha_{2}}^{[2], i_{2}} \ldots \Gamma_{\alpha_{n-1} 1}^{[M], i_{M}}\left|i_{1}, \ldots, i_{M}\right\rangle
$$

$\Gamma^{[/], i_{I}}$ - site dependent tensors, $\lambda^{[/]}$- bond vectors

- We find a quasi-exact many body ground state - bright soliton in a shallow trap (imaginary time propagation TEBD)
- Trap is removed, disorder turned on, real time propagation with TEBD
- Reliable calculations for $N=25$ particles

Many-body approach to Anderson localization

Technicalities

- Unit of length - soliton size ξ - Unit of time ξ^{2}
- Initial harmonic oscillator $\omega=0.025 / \xi^{2}$ (not to disturb the soliton shape yet to confine CM to a distance slightly larger than ξ)
- strength of the random potential comparable to soliton energy $\omega / 4$ i.e. $V_{0}=2.5 \times 10^{-4}$
- correlation of the disorder $\sigma_{0}=0.4 \xi$
- discretization $\delta=\xi / 5$ tests on smaller...
- time step (Trotter errors!) $d t=0.008 \xi^{2}$
- $N_{\text {max }}=14$ (needed!) despite $N \delta / 2 \xi=2.5$ for $N=25$
- $\chi=30$ (small possible) dimension per site 450 (1921 sites)

Many-body approach to Anderson localization Tests

- $\chi, N_{\text {max }}, d t, \ldots$
- entropy of entanglement growth

$$
S=\sup _{I} S_{I}=\sup _{I}\left[-\sum\left(\lambda_{\alpha}^{[/]}\right)^{2} \ln \left(\lambda_{\alpha}^{[/]}\right)^{2}\right]
$$

Many-body approach to Anderson localization Results

- Atomic density in time

96 realizations of disorder

Many-body approach to Anderson localization

Results

- One body density matrix $\left\langle\psi^{\dagger}(z) \psi\left(z^{\prime}\right)\right\rangle$

Transverse width $\approx \xi$. Largest eigenvalue $=$ condensate fraction $=0.14$!

Many-body approach to Anderson localization

Results

- One body density matrix $\left\langle\psi^{\dagger}(z) \psi\left(z^{\prime}\right)\right\rangle$

Transverse width $\approx \xi$. Largest eigenvalue $=$ condensate fraction $=0.14$.

Many-body approach to Anderson localization

 Simulation of the measurement- From MPS repesentation $\rightarrow \rho^{[/]}$by contraction of tensors..
- Choose n_{l} according to the statistical distribution
- Project MPS on subspace with that n_{l} on / site and normalize
- Repeat scanning other sites till reaching N

Many-body approach to Anderson localization

 Comparison with effective one body of 2009- Let us compare CM densities coming from both approaches

96 versus 10000 realizations of disorder for EOB. Dotted $1 / \mathrm{q}$.

Conclusions:

- AL for attractive interactions in 1D disorder
- Excellent agreement between full many body and EOB description
- Full simulation of the experiment including the measurements possible.

