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Quantum statistics

I One of the postulates of non-relativistic quantum mechanics says:

I For n indistinguishable particles the Hilbert space is

HF =
∧

n (H1)

HB = Symn (H1)

I In terms of the wave function when two fermions are exchanged the sign of the
wave function changes and for bosons it stays the same

I It was first noticed by Souriau, and subsequently by Leinaas and Myrheim that this
additional postulate can be understood in terms of topological properties of the
classical configuration space of indistinguishable particles.



Configuration spaces
I M – the one-particle classical configuration space (e.g., an m-dimensional

manifold)

I Fn(M) – the space of n distinct points in M.

Fn(M) = {(x1, x2, . . . , xn) : xi ∈ X, xi 6= xj} = M×n −∆

∆ = {(x1, x2, . . . , xn) : ∃i,j xi = xj}

I The n-particle configuration space is defined as an orbit space

Cn(M) = Fn(M)/Sn,

where Sn is the permutation group of n elements and the action of Sn on Fn(M) is
given by

σ(x1 , . . . x2) = (xσ(1) , . . . xσ(2)), ∀σ ∈ Sn.

I Any closed loop in Cn(M) represents a process in which particles start at some
particular configuration and end up in the same configuration modulo that they
might have been exchanged.

I The space of all loops up to continuous deformations equipped with loop
composition is the fundamental group π1(Cn(M))



Bosons and fermions in R3

I The abelianization of π1(Cn(M)) is the first homology group H1(Cn(M))

I Souriau, Leinaas and Myrheim: H1(Cn(M)) encodes information about quantum
statistics.

I Example1: Bosons and Fermions on M = Rm, where m ≥ 3

I The fundamental group

π1(Cn(Rm)) = Sn

I The first homology
H1(Cn(Rm)) = Z2 = ({1 , eiπ}, ·)



Anyons in R2

I Example 2: Anyons on M = R2

I π1(Cn(R2)) is Artin braid group Brn(R2)

Brn(R2) = 〈σ1, σ2, . . . , σn−1 |σiσi+1σi = σi+1σiσi+1, σiσj = σjσi〉,

where in the first group of relations we take 1 ≤ i ≤ n− 2, and in the second, we
take |i− j| ≥ 2.

I The abelianization of π1(Cn(R2)) is

H1(Cn(R2) , Z) = Z.

I Any phase is possible for particles exchange



Quantum statistics on graphs

I Γ = (V , E) be a metric connected simple graph on |V| vertices and |E| edges.

I Similarly to the previous cases we define

Fn(Γ) = Γ×n −∆

∆ = {(x1, x2, . . . , xn) : ∃i,j xi = xj}

and
Cn(Γ) = Fn(Γ)/Sn,

I The calculation of the first homology H1(Cn(Γ)) of Cn(Γ) can be reduced to the
computation of the first homology of some simpler space.

I n-particle combinatorial configuration space as

Dn(Γ) = (Γ×n − ∆̃)/Sn,

where ∆̃ denotes all cells whose closure intersects with ∆.





Combinatorial configuration spaces

I Abrams (2000): For any graph Γ with at least n vertices, the inclusion
Dn(Γ) ↪→ Cn(Γ) is a homotopy equivalence iff the following hold:

I Each path between distinct vertices of valence not equal to two passes through at least
n − 1 edges.

I Each closed path in Γ passes through at least n + 1 edges.

I Conclusion: H1(Dn(Γ)) = H1(Cn(Γ))

I Forman (1998) - discrete Morse theory - a general method for calculation Hk(X),
where X - CW complex

I Farley, Sabalka (2005) - H1(Dn(Γ)) for tree graphs

I Ko and Park (2011) - the full description of H1(Dn(Γ)) - highly technical

I AS (2012) - an alternative formulation of discrete Morse theory for Dn(Γ)

I Our goal: An elementary proof of the structure theorem for H1(Dn(Γ)) - not using
(or using in the limited way) discrete Morse theory



Homology of finitely generated modules

I By the structure theorem for finitely generated modules:

H1(Dn(Γ)) = Zk ⊕ Tl

where Tl is the torsion, i.e.

Tl = Zn1 ⊕ . . .⊕ Znl ,

and ni|ni+1.
I In other words H1(Dn(Γ)) is determined by k free parameters {φ1, . . . , φk} and l

discrete parameters {ψ1, . . . , ψl} such that for each i ∈ {1, . . . l}

niψi = 0 mod 2π, ni ∈ N and ni|ni+1.

I We will call the parameters φ and ψ continuous and discrete phases respectively.



Examples



Examples

φc,2 = φ1
c,1 + φY .

Knowing φY and the AB-phase determines the phase φc,2.



An overcomplete spanning set for H1(D2(Γ))

φc,2 = φ
v1
c,1 + φY1 , φc,2 = φ

v2
c,1 + φY2 ,

and hence

φ
v1
c,1 − φ

v2
c,1 = φY2 − φY1 .

The relations between different AB-phases for a fixed cycle c of Γ are encoded in the
phases φY .



An overcomplete spanning set for H1(D2(Γ))

We will use a spanning set containing the following:

1. All 2-particle cycles corresponding to the exchanges on Y subgraphs

of Γ. There can be dependencies between these cycles.

2. A set of β1(Γ) = E − V + 1 AB-cycles, one for each independent cycle in Γ.

I Thus, H1(D2(Γ)) = Zβ1(Γ) ⊕ A, where A is determined by Y-cycles.

I Consequently, in order to determine H1(D2(Γ)) one has to study the relations
between Y-cycles.



3-connected graphs

I Γ is n-connected graph if there are at least n internally disjoint paths between any
pair of vertices of Γ.

I The basic examples of 3-connected graphs are wheel graphs.

I (Wheel theorem) Let Γ be a simple 3-connected graph different from a wheel.
Then for some edge e ∈ E(Γ) either Γ \ e or Γ/e is simple and 3-connected.

I Γ \ e is constructed from Γ by removing the edge e – edge removal.

I Γ/e is obtained by contracting edge e and identifying its vertices – edge
contraction.

I The inverses will be called edge addition and vertex expansion.

I Any simple 3-connected graph can be constructed in a finite number of steps
starting from a wheel graph Wk, for some k

Wk = Γ0 7→ Γ1 7→ . . . 7→ Γn−1 7→ Γn = Γ

where Γi is constructed from Γi−1 by either
1. Adding an edge between non-adjacent vertices or
2. Expanding at the vertex of the valency at least four.

Moreover, each Γi is simple and 3-connected.



3-connected graphs

I In order to prove inductively some feature of a 3-connected graph it is enough to
show it for an arbitrary wheel and consider what happens when an edge between
two non-adjacent vertices is added or a vertex of valency at least four is expanded.

I Lemma 1: For wheel graphs Wn all phases φY are equal up to the sign.



3-connected graphs

I Lemma 2: For 3-connected simple graphs all phases φY are equal up to the sign.



3-connected graphs

I Theorem 1: For a 3-connected simple graph, H1(D2(Γ)) = Zβ1(Γ) ⊕ A, where
A = Z2 for non-planar graphs and A = Z for planar graphs.

I Proof: By Lemmas 1 and 2 we only need to determine the phase φY .

I By direct calculation for the graphs K5 and K3,3, H1(D2(Γ)) = Zβ1(Γ) ⊕ Z2, i.e.
φY = 0 or π.

I Kuratowski’s theorem: Every non-planar graph contains a subgraph which is
isomorphic to K5 or K3,3.

I This proves the statement for non-planar graphs.

I For planar graphs we have the anyon phase and hence A = Z.


