

Shift of resonance widths as a probe of non-orthogonality

Dmitry Savin

Department of Mathematical Sciences, Brunel University, UK

in collaboration with Yan Fyodorov (Queen Mary, UK)

- Perturbation theory as a powerful tool to
 - ... extend the class of explorable systems
 - ... probe them experimentally (scattering setup)

- Perturbation theory as a powerful tool to
 - ... extend the class of explorable systems
 - ... probe them experimentally (scattering setup)
- Recent interest to perturbations in quantum chaotic systems due to
 - ... universal parametric level dynamics (mesoscopics)
 - ... fidelity concept as susceptibility measure (quantum computing)

- Perturbation theory as a powerful tool to
 - ... extend the class of explorable systems
 - ... probe them experimentally (scattering setup)
- Recent interest to perturbations in quantum chaotic systems due to
 - ... universal parametric level dynamics (mesoscopics)
 - ... fidelity concept as susceptibility measure (quantum computing)
- Any scattering experiment makes the system open
 - ... levels (real, discrete) ~> resonances (complex, broad)
 - ... non-orthogonal states ++++ non-Hermitian operators

- Perturbation theory as a powerful tool to
 - ... extend the class of explorable systems
 - ... probe them experimentally (scattering setup)
- Recent interest to perturbations in quantum chaotic systems due to
 - ... universal parametric level dynamics (mesoscopics)
 - ... fidelity concept as susceptibility measure (quantum computing)
- Any scattering experiment makes the system open
 - ... levels (real, discrete) ~> resonances (complex, broad)
 - ... non-orthogonal states ++++ non-Hermitian operators
- How do resonance states change under perturbations?
- > What is their parametric statistics in chaotic regime?

Resonances in scattering

N levels (internal Hamiltonian $H = H^{\dagger}$) coupled to M channels via A_n^c

open system <----> resonances

poles of the scattering matrix

Resonances in scattering

N levels (internal Hamiltonian $H = H^{\dagger}$) coupled to M channels via A_n^c $H \xrightarrow{A} S$ open system $\leftrightarrow resonances$ poles of the scattering matrix • Scattering matrix = $\frac{\text{outgoing amplitude}}{\text{incoming amplitude}}$: (dim S = M) $S_{res}(E) = \frac{1 - iK(E)}{1 + iK(E)}$, with reaction matrix $K(E) = \frac{1}{2}A^{\dagger}\frac{1}{E-H}A$ Flux conservation (at zero absorption) $\leftrightarrow \Rightarrow$ unitary S (at real E)

Resonances in scattering

N levels (internal Hamiltonian $H = H^{\dagger}$) coupled to M channels via A_n^c $H \xrightarrow{A} S$ open system $\leftrightarrow resonances$ poles of the scattering matrix • Scattering matrix = $\frac{\text{outgoing amplitude}}{\text{incoming amplitude}}$: $(\dim S = M)$

 $S_{\text{res}}(E) = \frac{1 - iK(E)}{1 + iK(E)}$, with reaction matrix $K(E) = \frac{1}{2}A^{\dagger}\frac{1}{E-H}A$

Flux conservation (at zero absorption) $\leftrightarrow \rightarrow$ unitary S (at real E)

• Equivalent representation

Mahaux, Weidenmüller (1969); Livšic (1973)

$$S_{\rm res}(E) = 1 - iA^{\dagger} \frac{1}{E - \mathcal{H}_{\rm eff}} A$$

in terms of the effective non-Hermitian Hamiltonian: $(\dim \mathcal{H}_{eff} = N)$ $\mathcal{H}_{eff} = H - \frac{i}{2}AA^{\dagger}$, resonances \rightsquigarrow complex e.v. $\mathcal{E}_n = E_n - \frac{i}{2}\Gamma_n$

 $\mathcal{H}_{\text{eff}} \to \mathcal{H}'_{\text{eff}} = \mathcal{H}_{\text{eff}} + \alpha V$, with $V = V^{\dagger}$ and $\alpha \ll 1$ What is the resonance shift $\delta \mathcal{E}_n = \mathcal{E}'_n - \mathcal{E}_n$?

 $\mathcal{H}_{\text{eff}} \to \mathcal{H}'_{\text{eff}} = \mathcal{H}_{\text{eff}} + \alpha V$, with $V = V^{\dagger}$ and $\alpha \ll 1$ What is the resonance shift $\delta \mathcal{E}_n = \mathcal{E}'_n - \mathcal{E}_n$?

• Eigenvalues and bi-orthogonal (left and right) eigenstates

 $\mathcal{H}_{\text{eff}}|R_n\rangle = \mathcal{E}_n|R_n\rangle \text{ and } \langle L_n|\mathcal{H}_{\text{eff}} = \langle L_n|\mathcal{E}_n$ $\langle L_n|R_m\rangle = \delta_{nm} \text{ but } \langle L_n| \neq (|R_n\rangle)^{\dagger} \rightsquigarrow \text{ nonorthogonality matrix } U_{nm}$ $U_{nm} = \langle L_n|L_m\rangle = U_{mn}^* \neq \delta_{nm} \qquad \qquad \text{Bell, Steinberger (1959)}$

 $\mathcal{H}_{\text{eff}} \to \mathcal{H}'_{\text{eff}} = \mathcal{H}_{\text{eff}} + \alpha V$, with $V = V^{\dagger}$ and $\alpha \ll 1$ What is the resonance shift $\delta \mathcal{E}_n = \mathcal{E}'_n - \mathcal{E}_n$?

• Eigenvalues and bi-orthogonal (left and right) eigenstates

 $\mathcal{H}_{\text{eff}}|R_n\rangle = \mathcal{E}_n|R_n\rangle \text{ and } \langle L_n|\mathcal{H}_{\text{eff}} = \langle L_n|\mathcal{E}_n$ $\langle L_n|R_m\rangle = \delta_{nm} \text{ but } \langle L_n| \neq (|R_n\rangle)^{\dagger} \rightsquigarrow \text{ nonorthogonality matrix } U_{nm}$ $U_{nm} = \langle L_n|L_m\rangle = U_{mn}^* \neq \delta_{nm} \qquad \qquad \text{Bell, Steinberger (1959)}$

• PT routine for non-Hermitian operators yields the leading term

$$\delta \mathcal{E}_n = \alpha \langle L_n | V | R_n \rangle$$

 \rightsquigarrow generally complex $\delta \mathcal{E}_n = \delta E_n - \frac{i}{2} \delta \Gamma_n$, with sum rule $\sum_n \delta \Gamma_n = 0$

 $\mathcal{H}_{\text{eff}} \to \mathcal{H}'_{\text{eff}} = \mathcal{H}_{\text{eff}} + \alpha V$, with $V = V^{\dagger}$ and $\alpha \ll 1$ What is the resonance shift $\delta \mathcal{E}_n = \mathcal{E}'_n - \mathcal{E}_n$?

• Eigenvalues and bi-orthogonal (left and right) eigenstates

• PT routine for non-Hermitian operators yields the leading term

$$\delta \mathcal{E}_n = \alpha \langle L_n | V | R_n \rangle$$

 \rightsquigarrow generally complex $\delta \mathcal{E}_n = \delta E_n - \frac{i}{2} \delta \Gamma_n$, with sum rule $\sum_n \delta \Gamma_n = 0$

• Shift of the resonance width $\delta \Gamma_n$ reads

 $\delta\Gamma_n = i\alpha \sum_m (U_{nm}V_{mn} - V_{nm}U_{mn})$, where $V_{nm} = \langle R_n | V | R_m \rangle$

 \rightsquigarrow nonzero $\delta \Gamma_n$ is an indicator of nonorthogonality

DV Savin: Shift of resonance widths as a probe of non-orthogonality

Level separation Δ , coupling $(\hat{A}\hat{A}^{\dagger})_{12} = \sqrt{\gamma_1\gamma_2}\cos\theta$, with $\gamma_{1,2} = ||A_{1,2}||^2$ $\frac{1}{2} \begin{pmatrix} \Delta & 0 \\ 0 & -\Delta \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \gamma_1 & \sqrt{\gamma_1 \gamma_2} \cos \theta \\ \sqrt{\gamma_1 \gamma_2} \cos \theta & \gamma_2 \end{pmatrix} + \alpha \begin{pmatrix} 1 & v \\ v & -1 \end{pmatrix}$ $\Delta = 1, \mathbf{v} = 1$ $E_1 + E_2 = 0$ $\gamma_1 = \gamma_2 = 0.5$ 0.8 (this case) $\theta = \pi / 10$ (E_1,Γ_1) $\Gamma_1 + \Gamma_2 = \text{const}$ 0.4 (for any $V = V^{\dagger}$) (E_2, Γ_2) 0.2 $\begin{pmatrix} 1\\if \end{pmatrix}$ and $\begin{pmatrix} -if\\1 \end{pmatrix}$ -0.5 0.0 0.5 1.0 1.5

- Nonorthogonality matrix $U = [(1 + |f|^2)1_2 + 2\text{Re}(f)\sigma_y]/|1 f^2|^2$ with complex $f = \frac{\sqrt{\gamma_1\gamma_2}\cos\theta}{\delta + \sqrt{\delta^2 - \gamma_1\gamma_2\cos^2\theta}}$, where $\delta = \Delta - \frac{i}{2}(\gamma_1 - \gamma_2)$
- Width 'velocities' are due to the off-diagonal element of U: $\delta \dot{\Gamma}_1 = 4v \text{Re}(f)/|1 - f^2|^2 = -\delta \dot{\Gamma}_2$

Weakly open systems

$$\mathcal{H}_{ ext{eff}} = H - rac{i}{2} \gamma \hat{A} \hat{A}^{\dagger}$$
, with $\gamma \ll 1$

 \rightsquigarrow coupling (non-Hermitian term) can be treated as a perturbation of $H = \sum_{n} E_n |n\rangle \langle n|$

• Resonance positions E_n and widths $\Gamma_n = \gamma \sum_{c=1}^M |\hat{A}_n^c|^2$

Weakly open systems

 $\mathcal{H}_{\mathrm{eff}} = H - rac{i}{2} \gamma \hat{A} \hat{A}^{\dagger}$, with $\gamma \ll 1$

 \rightsquigarrow coupling (non-Hermitian term) can be treated as a perturbation of $H = \sum_{n} E_n |n\rangle \langle n|$

- Resonance positions E_n and widths $\Gamma_n = \gamma \sum_{c=1}^M |\hat{A}_n^c|^2$
- Perturbation αV yields shift of levels $\delta E_n = \alpha \langle n | V | n \rangle$, and of widths:

 $\delta\Gamma_n = \alpha\gamma \sum_{m\neq n} \frac{\langle m|G_n|m\rangle}{E_n - E_m}, \quad \text{with } G_n = \hat{A}\hat{A}^{\dagger}|n\rangle\langle n|V + V|n\rangle\langle n|\hat{A}\hat{A}^{\dagger}|n\rangle\langle n|V + V|n\rangle\langle n|V + V|n\rangle\langle n|V + V|n\rangle\langle n|V + V$

... looks like a 2nd order result but it is not!

Weakly open systems

 $\mathcal{H}_{\mathrm{eff}} = H - \frac{i}{2} \gamma \hat{A} \hat{A}^{\dagger}$, with $\gamma \ll 1$

 \rightsquigarrow coupling (non-Hermitian term) can be treated as a perturbation of $H = \sum_{n} E_n |n\rangle \langle n|$

- Resonance positions E_n and widths $\Gamma_n = \gamma \sum_{c=1}^M |\hat{A}_n^c|^2$
- Perturbation αV yields shift of levels $\delta E_n = \alpha \langle n | V | n \rangle$, and of widths:

 $\delta\Gamma_n = \alpha\gamma \sum_{m \neq n} \frac{\langle m|G_n|m\rangle}{E_n - E_m}, \quad \text{with } G_n = \hat{A}\hat{A}^{\dagger}|n\rangle\langle n|V + V|n\rangle\langle n|\hat{A}\hat{A}^{\dagger}$

... looks like a 2nd order result but it is not!

- Result of resonance interference (interaction via common channels)
 - ... governed by rank-two operator G_n

... different from other non-orthogonality measures:

- e.g. Peterman's factor U_{nn} (Schomerus et al, 2000)
- or complexness factor $({
 m Im}\psi_n)^2/({
 m Re}\psi_n)^2$ (DS, Legrand, Mortessagne, 2006)

H taken from appropriate ensemble of random matrices $\leftrightarrow \Rightarrow$ **RMT** + symmetry constraints on *H* (e.g. $H^T = H$ for time-reversal)

H taken from appropriate ensemble of random matrices $\leftrightarrow \Rightarrow$ **RMT** + symmetry constraints on *H* (e.g. $H^T = H$ for time-reversal)

• Universality of spectral correlations: In the RMT limit $N \to \infty$, local fluctuations at the scale of mean level spacing $\Delta \sim \frac{1}{N}$ are universal and described by those in Gaussian ensembles:

$$\langle (\cdots) \rangle = \text{const} \int (\cdots) \prod_{n \neq m} |E_n - E_m|^{\beta} \prod_n e^{-\frac{N\beta}{4}E_n^2} dE_n$$

GOE (β =1, with TRS) and GUE (β =2, without TRS)

H taken from appropriate ensemble of random matrices $\leftrightarrow \Rightarrow$ **RMT** + symmetry constraints on *H* (e.g. $H^T = H$ for time-reversal)

• Universality of spectral correlations: In the RMT limit $N \to \infty$, local fluctuations at the scale of mean level spacing $\Delta \sim \frac{1}{N}$ are universal and described by those in Gaussian ensembles:

$$\langle (\cdots) \rangle = \text{const} \int (\cdots) \prod_{n \neq m} |E_n - E_m|^{\beta} \prod_n e^{-\frac{N\beta}{4}E_n^2} dE_n$$

GOE (β =1, with TRS) and GUE (β =2, without TRS)

• Gaussian A_n^c result in $\chi^2_{M\beta}$ distribution of the widths (at $\gamma \ll 1$)

$$\kappa_n = \frac{\pi \Gamma_n}{\gamma \Delta}$$
: $\operatorname{Prob}(\kappa) \propto \kappa^{M\beta/2 - 1} e^{-\beta \kappa/2}$ Porter, Thomas (1956)

with mean $\langle \kappa \rangle = M$ and variance $var(\kappa) = \frac{2}{M\beta} \langle \kappa \rangle^2$

H taken from appropriate ensemble of random matrices $\leftrightarrow \Rightarrow$ **RMT** + symmetry constraints on *H* (e.g. $H^T = H$ for time-reversal)

• Universality of spectral correlations: In the RMT limit $N \to \infty$, local fluctuations at the scale of mean level spacing $\Delta \sim \frac{1}{N}$ are universal and described by those in Gaussian ensembles:

$$\langle (\cdots) \rangle = \text{const} \int (\cdots) \prod_{n \neq m} |E_n - E_m|^{\beta} \prod_n e^{-\frac{N\beta}{4}E_n^2} dE_n$$

GOE (β =1, with TRS) and GUE (β =2, without TRS

• Gaussian A_n^c result in $\chi^2_{M\beta}$ distribution of the widths (at $\gamma \ll 1$)

$$\kappa_n = \frac{\pi \Gamma_n}{\gamma \Delta}$$
: $\operatorname{Prob}(\kappa) \propto \kappa^{M\beta/2 - 1} e^{-\beta \kappa/2}$ Porter, Thomas

with mean $\langle \kappa \rangle = M$ and variance $var(\kappa) = \frac{2}{M\beta} \langle \kappa \rangle^2$

 \triangleright What are the statistical properties of width shifts $\delta\Gamma_n$?

s (1956)

... is due to nondiagonal elements of $(AA^{\dagger})_{nm} = \sum_{c=1}^{M} A_n^c A_m^{c*}$

- ... is due to nondiagonal elements of $(AA^{\dagger})_{nm} = \sum_{c=1}^{M} A_n^c A_m^{c*}$
- Geometrical representation in terms of scalar products of M-vectors with lengths κ_n and projections $z_m^{(n)}$ Poli, DS, Legrand, Mortessagne (2009)
- Rescaling in natural units (to get rid of non-universal features)

$$y_n = \frac{N\delta\Gamma_n}{2\alpha\gamma\sqrt{\mathrm{Tr}(V^2)}} = \frac{\sqrt{\kappa_n}}{\pi} \sum_{m \neq n} \frac{\Delta\mathrm{Re}(z_m^{(n)*}v_m^{(n)})}{E_n - E_m}$$

- ... is due to nondiagonal elements of $(AA^{\dagger})_{nm} = \sum_{c=1}^{M} A_n^c A_m^{c*}$
- Geometrical representation in terms of scalar products of M-vectors with lengths κ_n and projections $z_m^{(n)}$ Poli, DS, Legrand, Mortessagne (2009)
- Rescaling in natural units (to get rid of non-universal features)

$$y_n = \frac{N\delta\Gamma_n}{2\alpha\gamma\sqrt{\mathrm{Tr}(V^2)}} = \frac{\sqrt{\kappa_n}}{\pi} \sum_{m \neq n} \frac{\Delta\mathrm{Re}(z_m^{(n)*}v_m^{(n)})}{E_n - E_m}$$

• Probability distribution of the width shifts (at the spectrum centre)

 $\mathcal{P}_M(y) = \Delta \langle \sum \delta(E_n) \overline{\delta(y - y_n)} \rangle$

with $\langle (\cdots) \rangle$ over κ_n , and E_n and $\overline{(\cdots)}$ over normal $z_m^{(n)}$ and $v_m^{(n)}$

- ... is due to nondiagonal elements of $(AA^{\dagger})_{nm} = \sum_{c=1}^{M} A_n^c A_m^{c*}$
- Geometrical representation in terms of scalar products of M-vectors with lengths κ_n and projections $z_m^{(n)}$ Poli, DS, Legrand, Mortessagne (2009)
- Rescaling in natural units (to get rid of non-universal features)

$$y_n = \frac{N\delta\Gamma_n}{2\alpha\gamma\sqrt{\mathrm{Tr}(V^2)}} = \frac{\sqrt{\kappa_n}}{\pi} \sum_{m \neq n} \frac{\Delta\mathrm{Re}(z_m^{(n)*}v_m^{(n)})}{E_n - E_m}$$

• Probability distribution of the width shifts (at the spectrum centre) $\mathcal{P}_M(y) = \Delta \langle \sum \delta(E_n) \overline{\delta(y - y_n)} \rangle$

with $\langle (\cdots) \rangle$ over κ_n , and E_n and $\overline{(\cdots)}$ over normal $z_m^{(n)}$ and $v_m^{(n)}$

• Reduction to the spectral determinant problem for F.T.

$$\overline{e^{-i\omega y_n}} = \prod_{m \neq n} \frac{|E_n - E_m|^{\beta}}{[(E_n - E_m)^2 + \kappa_n (\omega \Delta / \pi \sqrt{\beta})^2]^{\beta/2}}$$

$$\rightsquigarrow \operatorname{const} \left\langle \frac{\det(H_1)^{2\beta}}{\det[H_1^2 + (\omega \Delta / \pi \sqrt{\beta})^2]^{\beta/2}} \right\rangle_{N-1} \equiv C_{N-1}^{(\beta)}(\omega)$$

DV Savin: Shift of resonance widths as a probe of non-orthogonality

$$\mathcal{P}_{M}(y) = \int_{0}^{\infty} \frac{d\kappa}{\sqrt{\kappa}} \chi_{M\beta}^{2}(\kappa) \,\phi^{(\beta)}\left(\frac{y}{\sqrt{\kappa}}\right), \qquad \text{with} \begin{cases} \phi^{(1)}(y) = \frac{4+y^{2}}{6(1+y^{2})^{5/2}} \\ \phi^{(2)}(y) = \frac{35+14y^{2}+3y^{4}}{12\pi(1+y^{2})^{4}} \end{cases}$$

where $\phi^{(\beta)}(y)$ is the F.T. of spectral determinant $C_{\infty}^{(\beta)}(\omega)$

• $var(\Gamma)$ as a control parameter for nonorthogonality

DV Savin: Shift of resonance widths as a probe of non-orthogonality

Conclusion & outlook

- Parametric motion of resonance states in open systems
- Access to spatial properties via purely spectral tools
- Shift of resonance widths as a signature of nonorthogonality
- Distribution of width shifts in weakly open chaotic systems

Fyodorov & Savin: PRL 108, 184101 (2012)

Conclusion & outlook

- Parametric motion of resonance states in open systems
- Access to spatial properties via purely spectral tools
- Shift of resonance widths as a signature of nonorthogonality
- Distribution of width shifts in weakly open chaotic systems

Fyodorov & Savin: PRL **108**, 184101 (2012)

- Further study:
 - Global vs local perturbations
 - Generalisation to arbitrary modal overlap
 - Correlation properties, and other statistics
 - ▷ "Making sense" of pseudospectra (e.g. U_{nn} = condition number)

