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e Perturbation theory as a powerful tool to
extend the class of explorable systems

probe them experimentally (scattering setup)

e Recent interest to perturbations in quantum chaotic systems due to
universal parametric level dynamics (mesoscopics)

fidelity concept as susceptibility measure (quantum computing)

e Any scattering experiment makes the system open
levels (real, discrete) ~~ resonances (complex, broad)

non-orthogonal states «~ non-Hermitian operators

> How do resonance states change under perturbations?

> What is their parametric statistics in chaotic regime?
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N levels (internal Hamiltonian 7 = H') coupled to M channels via A¢

open system «~ resonances
= S poles of the scattering matrix
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N levels (internal Hamiltonian 7 = H') coupled to M channels via A¢

open system «~ resonances

= S poles of the scattering matrix
- : i litude . :
e Scattering matrix = fn‘jfogr‘r’fi?é Zﬁ‘;ﬁi‘; < (dim S = M)
 1-iK(E)

S.es(E) = . with reaction matrix K(E) = 1 AT _1_ A
eS( ) 1+ZK(E) ( ) 2 E—H

Flux conservation (at zero absorption) «~ unitary S (at real F)
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N levels (internal Hamiltonian 7 = H') coupled to M channels via A¢

open system «~ resonances

= S poles of the scattering matrix
- : i litude . :
e Scattering matrix = fn‘j:';grzliﬁi zﬁgﬁi‘; < (dim S = M)
 1-iK(E)

Sres(E)

— . with reaction matrix K(E) = 1 AT _1_ A
1+iK(FE) (B) = 3AT5-m

Flux conservation (at zero absorption) «~ unitary S (at real F)

e Equivalent representation Mahaux, Weidenmdiller (1969); Livsic (1973)
1
Sres(E) =1 — 3AT A
eS( ) ' /8 = /Heff
In terms of the effective non-Hermitian Hamiltonian: (dim Heg = N)

Hes = H — LAAT, resonances ~» complexe.v. &, = E, — 4[,,
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A Hor — Hlg = Heg+aV,WithV = VTand a < 1

~~ S Whatis the resonance shift 5&,, — & — En?
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A Hor — Hlg = Heg+aV,WithV = VTand a < 1

== S What is the resonance shift 0, =& — Ep?

e Eigenvalues and bi-orthogonal (left and right) eigenstates
Het|Rn) = En|Ry) and (L, |Heg = (L |En
(Lp|Rm) = 0 but (L,,| # (| R,,))T ~ nonorthogonality matrix U,,,,

Unm = (Ln|Lm) = U, # 0nm Bell, Steinberger (1959)
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(Lp|Ry) = 6, but (L,| # (|R,))T ~ nonorthogonality matrix U,,,,,
Unm = (Ln|Lm) = U, # 0nm Bell, Steinberger (1959)
e PT routine for non-Hermitian operators yields the leading term
0, = a{L,|V|Ry)

~ generally complex §&,, = 0E,, — 46T, with sum rule Y~ oI, =0
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A Hor — Hlg = Heg+aV,WithV = VTand a < 1

== S What is the resonance shift 0, =& — Ep?

e Eigenvalues and bi-orthogonal (left and right) eigenstates
Hegt|Bn) = En|Rn) @Nd (Ly|[Hegt = (Ln|En
(Lp|Ry) = 6, but (L,| # (|R,))T ~ nonorthogonality matrix U,,,,,
Unm = (Ln|Lm) = U, # 0nm Bell, Steinberger (1959)
e PT routine for non-Hermitian operators yields the leading term
0, = a{L,|V|Ry)
~ generally complex §&,, = 0E,, — 46T, with sum rule Y~ oI, =0
e Shift of the resonance width 01, reads
o, = @0y o Yo = Vi WG Voo = /8 V|18

~» nonzero 61, I1s an indicator of nonorthogonality
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| 2

Level separation A, coupling (AA") 15 = /7172 cos @, with v, 5 = || Ay

;(A 0 )_g( - mcose)+a(1 v)

2\ 0 —-A 2 \ /Y172 cosb Yo v —1
'~ meneos e, Bt B=0 | |

1 i
L~ 1 : i ' |
T~ 6=7/10 ] (this case) i i :
L Iy ] s | (E1,T'1) 1
i Sso : I, 1 O.Gj I 1
e ___ = > ] :
o T , ['y + 'y = const j j
i P 1 04 ! )
S e : (forany V = V) - ED ! |
f | | |
1

g ] 02

—r 2 ] _ - I i
N () and () et f

DV Savin: Shift of resonance widths as a probe of non-orthogonality 5/10



An example: Two-level system Brunel

UNIVERSITY

‘ 2

Level separation A, coupling (AA") 15 = /7172 cos @, with v, 5 = || Ay

| .
1A 0 ot Y1 /Y172 cos 6 T 1 v
2\ 0 —-A 2 \ /Y172 cosb Yo v —1

L A=1v=1 ] Ei+E,=0 e o |
2 ;\ - v1=Y2=0.5 E * 1 . + 2 0.8; l| i
- S._ =710 | (this case) i | ]
e oo o ST [y ] ool ! (E1.T1) ]
i Se o F? ] or " ]

__________ z

2 T ] ['y + 'y = const , ,
I - ] 04 ! i

A e g (forany V = V1) - (Bl :' |
E’,z 0.2 : il

-2+ 2 b . [ | — 1
: : 1 —if f - |
S O NI L : and T ) B ‘\"\’ \\\\\\\\\\ ]
-15 -10 -05 0.0 05 10 15 (Zf ) ( 1 ) -2 -1 0 1 2

e Nonorthogonality matrix U = [(1 + | f|?)12 + 2Re(f) 0,]/|1 — f?|?

: o VY172 cos 8 o '
with complex [ = P ——l where § = A — 5 (v1 — 2)

e Width ‘velocities’ are due to the off-diagonal element of U

oT'1 = 4vRe(f) /|1 — f2|? = =61,
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Hep = H — LyAAT, with v < 1

— ~ coupling (non-Hermitian term) can be treated
as a perturbation of H = > L, |n)(n|

e Resonance positions E,, and widths I',, = ~ ch\il \A%\Q
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Hep = H — LyAAT, with v < 1

~ coupling (non-Hermitian term) can be treated
as a perturbation of H = > L, |n)(n|

e Resonance positions E,, and widths I',, = ~ ch\il \A%\Q

e Perturbation oV yields shift of levels 6 E,, = a(n|V'|n), and of widths:

(m|G \m _ A A .
I = - n = AAf AAT
J orymz#n E _F. with GG n)(n|V + Vn)(n|
.. looks like a 2nd order result but it is not!

DV Savin: Shift of resonance widths as a probe of non-orthogonality 6/10



Weakly open systems Brunel

UNIVERSITY

Hep = H — LyAAT, with v < 1

~ coupling (non-Hermitian term) can be treated
as a perturbation of H = > L, |n)(n|

e Resonance positions E,, and widths I',, = ~ Z£1 \121%\2

e Perturbation oV yields shift of levels 6 E,, = a(n|V'|n), and of widths:

6Ty =ay Y g‘(inj‘fm with Gy, = AAT|n) (n|V + V|n) (n|AAT

m=£n

.. looks like a 2nd order result but It Is not!

e Result of resonance interference (interaction via common channels)
.. governed by rank-two operator G,

.. different from other non-orthogonality measures:
- e.g. Peterman’s factor U,,,, (Schomerus et al, 2000)
- or complexness factor (Im),,)?/(Re,, )? (DS, Legrand, Mortessagne, 2006)
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e Statistical approach: replace H with a random operator
Wigner, Dyson (’60s), Bohigas, Giannoni, Schmidt (1984)

H taken from appropriate ensemble of random matrices «~ RMT
+ symmetry constraints on H (e.g. H' = H for time-reversal)
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Wigner, Dyson ('60s), Bohigas, Giannoni, Schmidt (1984)

H taken from appropriate ensemble of random matrices «~ RMT
+ symmetry constraints on H (e.g. H' = H for time-reversal)

e Universality of spectral correlations: In the RMT limit N — oo,
local fluctuations at the scale of mean level spacing A ~ % are
universal and described by those in Gaussian ensembles:

<(---)>:C0nst/( ) T 1B Em\BH NeB2 g

n#m

GOE (=1, with TRS) and GUE (/3 2, without TRS)
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e Statistical approach: replace H with a random operator
Wigner, Dyson ('60s), Bohigas, Giannoni, Schmidt (1984)

H taken from appropriate ensemble of random matrices «~ RMT
+ symmetry constraints on H (e.g. H' = H for time-reversal)

e Universality of spectral correlations: In the RMT limit N — oo,
local fluctuations at the scale of mean level spacing A ~ % are
universal and described by those in Gaussian ensembles:

<(---)>:C0nst/( ) T 1B Em\BH NeB2 g

n#m

GOE (f=1,with TRS) and GUE (/3 2, without TRS)
e Gaussian A¢ result in X%Wﬁ distribution of the widths (at v < 1)

Ky, = Tl Prob(k) o xMPB/2-1p—PK/2 Porter, Thomas (1956)
YA

with mean () = M and variance var(x) = 375(x)”

> What are the statistical properties of width shifts o6I°,,?
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is due to nondiagonal elements of (4AT),,, = S22 Ac Ac*
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is due to nondiagonal elements of (AAT),,, = ch\il A ACH

e Geometrical representation in terms of scalar products of M-vectors
with lengths ~,, and projections zq(g) Poli, DS, Legrand, Mortessagne (2009)

e Rescaling in natural units (to get rid of non-universal features)

NoT, R Z ARe zq(g) vq(ff))

e 207/Tr(V2) Tl
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is due to nondiagonal elements of (AAT),,, = ch\il A ACH

e Geometrical representation in terms of scalar products of M-vectors

with lengths ~,, and projections zq(g) Poli, DS, Legrand, Mortessagne (2009)

e Rescaling in natural units (to get rid of non-universal features)

B NI, R Z ARe(zq(g) vq(ff))
o 2ary4/Tr(V?) T o Tl

e Probability distribution of the width shifts (at the spectrum centre)

Pr(y) = A 0(En)d(y — Yn))

with ((---)) over x,, and E,, and (- - -) over normal 2 and v
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is due to nondiagonal elements of (AAT),,, = Z;?il A ACH

e Geometrical representation in terms of scalar products of M-vectors

with lengths ~,, and projections zq(g) Poli, DS, Legrand, Mortessagne (2009)

e Rescaling in natural units (to get rid of non-universal features)

NI, R Z ARe(zq({?) vq(ff))

y,n — —
2ary4/Tr(V?) T o Tl

e Probability distribution of the width shifts (at the spectrum centre)

Pr(y) = A 0(En)d(y — Yn))

with ((---)) over x,, and E,, and (- - -) over normal 2 and v

e Reduction to the spectral determinant problem for F.T.

—7 n — |En_Em|B
e = lnn (@B Tt @b VB P72

det(H1)2? _ ~(B)
~ const <det[H12—|—(wA}7T\/B)2]5/2 >N_1 =Cy_ (W)




Exact result and discussion Brunel

UNIVERSITY

>* dr Y 1)(9) — 4—%25/2
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0 VK (7 62 (y) = Bt

where (9 (y) is the F.T. of spectral determinant '\’ (w)
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(1) (0 — _ 4+y?
> dk Y _ ¢ (y)'_'6(1+ 2Y5/2

Pu(y)= | —=xirs(r) 8P (=), with y
G (A 6 (y) = S

where (9 (y) is the F.T. of spectral determinant '\’ (w)
Dlssilovie Pz €1 kil = L0}, 2(©),0(65) e L) Gl

——— — ; — ; ———
1r ‘ =11 o 2 B=27
:i' 'A.’g.‘“
01 E /';"I '\\\:‘\ 01 3 ""I \n\‘
vi ! \ \Y
0.01 E v ; Q\ N | 001 £
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o 72 L KRl O o_t o/
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(1) (0 — _ 4+y?
o0 d/i 2 (6) y . ¢ (y) T 6(1—|—y2)5/2
= — = th
Pul) = | i) 67 (7). 6O (y) = Ly’

where (9 (y) is the F.T. of spectral determinant '\’ (w)

—— ——
1r ‘ =11 o 2 B=27
:i' 'A.’gl‘“
01 E /!'I '\\\:‘\ 01 3 ""I \n\‘
i ! \ \;
0.01 E v ; Q\ N | 001 £
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o Fartails oc y~ %2  «vs level repulsion « |E,, 1 —E,|"
e At M > 1 converges to gb(ﬁ)(\/Lﬁ) ~ away to measure O (w)?!

e var(I") as a control parameter for nonorthogonality
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Conclusion & outlook Brunel
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e Parametric motion of resonance states in open systems

e Access to spatial properties via purely spectral tools

e Shift of resonance widths as a signature of nonorthogonality
e Distribution of width shifts in weakly open chaotic systems

Fyodorov & Savin: PRL 108, 184101 (2012)
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e Access to spatial properties via purely spectral tools
e Shift of resonance widths as a signature of nonorthogonality
e Distribution of width shifts in weakly open chaotic systems
Fyodorov & Savin: PRL 108, 184101 (2012)

e [Further study:
> Global vs local perturbations
> Generalisation to arbitrary modal overlap
> Correlation properties, and other statistics

> “Making sense” of pseudospectra (e.g. U,,,, = condition number)
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