On spectral gap for quantum graphs

Pavel Kurasov
(Stockholm)

Sergei Naboko (S:t Petersburg) \& Gabriela Malenova (Prague)

May 26, 2013
Chaos 006
(1) Introduction

- Definitions
- Elementary properties
- Questions
- History
(2) Minimizing the spectral gap
(3) Adding edges
(4) Mathematical experiments
(5) Cutting and deleting edges

Quantum graph

- Metric graph

- Differential expression on the edges
- Matching conditions

Via irreducible unitary matrices S^{m} associated with each internal vertex V_{m}

Quantum graph

- Metric graph

- Differential expression on the edges

$$
\ell_{q, a}=\left(i \frac{d}{d x}+a(x)\right)^{2}+q(x)
$$

- Matching conditions Via irreducible unitary matrices S^{m} associated with each internal vertex V_{m}

Quantum graph

- Metric graph

- Differential expression on the edges

$$
\ell_{q, a}=\left(i \frac{d}{d x}+a(x)\right)^{2}+q(x)
$$

- Matching conditions

Via irreducible unitary matrices S^{m} associated with each internal vertex V_{m}

$$
i\left(S^{m}-I\right) \vec{\psi}_{m}=\left(S^{m}+I\right) \partial \vec{\psi}_{m}, \quad m=1,2, \ldots, M
$$

Standard Laplacian

- Metric graph

- Differential expression on the edges

$$
\ell_{q, a}=-\frac{d^{2}}{d x^{2}}
$$

- Standard matching conditions
$\left\{\begin{array}{l}\text { the function is continuous at } V_{m}, \\ \text { the sum of normal derivatives is zero. }\end{array}\right.$

Spectral properties

Our assumption:

- The metric graph Γ is connected and formed by a finite number of compact edges.

Spectral properties

Our assumption:

- The metric graph Γ is connected and formed by a finite number of compact edges.
Properties:
The spectrum is discrete and tends to ∞ satisfying Weyl's asymptotic law

$$
\lambda_{n} \sim\left(\frac{\pi}{\mathcal{L}}\right) n^{2}
$$

$\lambda_{0}=0$ is a simple eigenvalue with the eigenfunction $\psi_{0}=1$.
The asymptotic behavior of the spectrum determines the Euler characteristics of the underlying metric graph.
The spectral gap $\lambda_{1}-\lambda_{0}$ coincides with λ_{1}.
M. Fiedler: the spectral gap for discrete Laplacians is the measure of their connectivity $\Rightarrow \lambda_{1}$ is called the algebraic connectivity

Spectral properties

Our assumption:

- The metric graph Γ is connected and formed by a finite number of compact edges.
Properties:
The spectrum is discrete and tends to ∞ satisfying Weyl's asymptotic law

$$
\lambda_{n} \sim\left(\frac{\pi}{\mathcal{L}}\right) n^{2}
$$

$\lambda_{0}=0$ is a simple eigenvalue with the eigenfunction $\psi_{0}=1$.
The asymptotic behavior of the spectrum determines the Euler characteristics of the underlying metric graph.
The spectral gap $\lambda_{1}-\lambda_{0}$ coincides with λ_{1}.
Discrete graphs:
M. Fiedler: the spectral gap for discrete Laplacians is the measure of their connectivity $\Rightarrow \lambda_{1}$ is called the algebraic connectivity.

Our questions today

- How does spectral gap depend on connectivity?
- What happens to the spectral gap as new edges are added to a graph?
- Which graphs have the smallest spectral gap?
- Explicit estimates for the spectral gap?

What was known?

- The spectral gap can be calculated using Rayleigh quotient

$$
\begin{equation*}
\lambda_{1}(\Gamma)=\min _{\substack{\psi \perp 1 \\ \psi \in C(\Gamma)}} \frac{\int_{\Gamma}\left|\psi^{\prime}\right|^{2} d x}{\int_{\Gamma}|\psi|^{2} d x} \tag{1}
\end{equation*}
$$

- Joining two vertices into one increases the spectral gap, since the number of admissible functions in (1) decreases.
- L. Friedlander (2005): among all graphs with the same total length single interval-graph has the smallest spectral gap

What was known?

- The spectral gap can be calculated using Rayleigh quotient

$$
\begin{equation*}
\lambda_{1}(\Gamma)=\min _{\psi \perp 1}^{\psi \in C(\Gamma)} \frac{\int_{\Gamma}\left|\psi^{\prime}\right|^{2} d x}{\int_{\Gamma}|\psi|^{2} d x} \tag{1}
\end{equation*}
$$

- Joining two vertices into one increases the spectral gap, since the number of admissible functions in (1) decreases.

What was known?

- The spectral gap can be calculated using Rayleigh quotient

$$
\lambda_{1}(\Gamma)=\min _{\substack{\psi \perp 1 \\ \psi \in C(\Gamma)}} \frac{\int_{\Gamma}\left|\psi^{\prime}\right|^{2} d x}{\int_{\Gamma}|\psi|^{2} d x}
$$

- Joining two vertices into one increases the spectral gap, since the number of admissible functions in (1) decreases.
- L. Friedlander (2005): among all graphs with the same total length single interval-graph has the smallest spectral gap
- We learned about the proof after our paper was accomplished
- The proof uses symmetrization technique and is irrelevant to the topology of the underlying graph
"First it is sufficient to prove the inequality ... for trees"(L. Friedlander)

What was known?

- The spectral gap can be calculated using Rayleigh quotient

$$
\lambda_{1}(\Gamma)=\min _{\psi \perp 1}^{\psi \in C(\Gamma)} \frac{\int_{\Gamma}\left|\psi^{\prime}\right|^{2} d x}{\int_{\Gamma}|\psi|^{2} d x}
$$

- Joining two vertices into one increases the spectral gap, since the number of admissible functions in (1) decreases.
- L. Friedlander (2005): among all graphs with the same total length single interval-graph has the smallest spectral gap
- We learned about the proof after our paper was accomplished
- The proof uses symmetrization technique and is irrelevant to the topology of the underlying graph
"First it is sufficient to prove the inequality ... for trees" (L. Friedlander)
- P. Exner and M. Jex (2012) demonstrated unusual behavior of the spectral gap for Quantum graphs with delta interactions at the vertices.

Estimate for the spectral gap

Theorem 1. (Friedlander, Ku-Naboko)

$$
\lambda_{1}(\Gamma) \geq \lambda_{1}\left(\Delta_{\mathcal{L}(\Gamma)}\right)=\left(\frac{\pi}{\mathcal{L}(\Gamma)}\right)^{2}
$$

Proof

$$
\lambda_{1}=\frac{\int_{\Gamma}\left|\psi_{1}^{\prime}\right|^{2} d x}{\int_{\Gamma}\left|\psi_{1}\right|^{2} d x}
$$

ψ_{1} - the eigenfunction corresponding to λ_{1}
$\Gamma \Rightarrow \Gamma^{2}$ - double cover of Γ - the graph with the same set of vertices but with all edges doubled

$$
\lambda_{1}=\frac{\int_{\Gamma^{2}}\left|\psi_{1}^{\prime}\right|^{2} d x}{\int_{\Gamma^{2}}\left|\psi_{1}\right|^{2} d x}
$$

Γ^{2} is a graph with even degrees of all vertices \Rightarrow there exists Eulerian path going along every edge precisely one time. This path can be identified with the loop of double length $S_{2 \mathcal{L}}$.

$$
\lambda_{1} \geq \min \frac{\int_{S_{2} \mathcal{L}}\left|u^{\prime}\right|^{2} d x}{\int_{S_{2 \mathcal{L}}}|u|^{2} d x}=\lambda_{1}\left(S_{2 \mathcal{L}}\right)=\lambda_{1}\left(\Delta_{\mathcal{L}}\right) .
$$

Corollary 1

Among all graphs of the same total length single interval has the smallest spectral gap.
Geometric version of Ambartsumian theorem (1929).

Corollary 2

Similar estimates for all higher eigenavlues
Corollary 3 (Ku-Naboko)
If the degrees of all vertices in 「 are even, then the following estimate holds

Proof: no need to double the edges
Cannot he nroven using svmmetrization technique

Corollary 1

Among all graphs of the same total length single interval has the smallest spectral gap.
Geometric version of Ambartsumian theorem (1929).

Corollary 2

Similar estimates for all higher eigenavlues.
Corollary 3 (Ku-Naboko)
If the degrees of all vertices in 「 are even, then the following estimate holds

Proof: no need to double the edges
Cannot he nroven using svmmetrization technique

Corollary 1

Among all graphs of the same total length single interval has the smallest spectral gap.
Geometric version of Ambartsumian theorem (1929).

Corollary 2

Similar estimates for all higher eigenavlues.
Corollary 3 (Ku-Naboko)
If the degrees of all vertices in Γ are even, then the following estimate holds

$$
\lambda_{1}(\Gamma) \geq \lambda_{1}\left(S_{\mathcal{L}}\right)=4 \lambda_{1}\left(\Delta_{\mathcal{L}(\Gamma)}\right)=4\left(\frac{\pi}{\mathcal{L}(\Gamma)}\right)^{2} .
$$

Proof: no need to double the edges
Cannot be proven using symmetrization technique.

Adding an edge

Adding an edge increases the total volume of the graph \Rightarrow the first eigenvalue has a tendency to decrease (in contrast to discrete graphs!).

Adding pending edge
Theorem
(1) The first eigenvalues satisfy the following inequality:
(2) The equality $\lambda_{1}(\Gamma)=\lambda_{1}\left(\Gamma^{\prime}\right)$ holds if and only if every eigenfunction ψ_{1}

Adding an edge

Adding an edge increases the total volume of the graph \Rightarrow the first eigenvalue has a tendency to decrease (in contrast to discrete graphs!).

Adding pending edge

 Theorem(1) The first eigenvalues satisfy the following inequality:

$$
\lambda_{1}(\Gamma) \geq \lambda_{1}\left(\Gamma^{\prime}\right)
$$

(2) The equality $\lambda_{1}(\Gamma)=\lambda_{1}\left(\Gamma^{\prime}\right)$ holds if and only if every eigenfunction ψ_{1} corresponding to $\lambda_{1}(\Gamma)$ is equal to zero at V_{1}

$$
\psi_{1}\left(V_{1}\right)=0
$$

Adding an edge between two exciting vertices

 Two different tendencies:- Adding an edge increases the volume $\Rightarrow \lambda_{1} \searrow$
- Connecting two vertices introduces new restrictions $\Rightarrow \lambda_{1} \nearrow$

Adding an edge between two exciting vertices

Two different tendencies:

- Adding an edge increases the volume $\Rightarrow \lambda_{1} \searrow$
- Connecting two vertices introduces new restrictions $\Rightarrow \lambda_{1} \nearrow$

Theorem 1

If the eigenfunction ψ_{1} corresponding to the first excited eigenvalue can be chosen such that

$$
\psi_{1}\left(V_{1}\right)=\psi_{1}\left(V_{2}\right),
$$

then:

$$
\lambda_{1}(\Gamma) \geq \lambda_{1}\left(\Gamma^{\prime}\right) .
$$

Adding an edge between two exciting vertices

Two different tendencies:

- Adding an edge increases the volume $\Rightarrow \lambda_{1} \searrow$
- Connecting two vertices introduces new restrictions $\Rightarrow \lambda_{1} \nearrow$

Theorem 1

If the eigenfunction ψ_{1} corresponding to the first excited eigenvalue can be chosen such that

$$
\psi_{1}\left(V_{1}\right)=\psi_{1}\left(V_{2}\right),
$$

then:

$$
\lambda_{1}(\Gamma) \geq \lambda_{1}\left(\Gamma^{\prime}\right) .
$$

Theorem 2
If the length of the new edge is greater than the total length of the original graph, then the spectral gap decreases.

Mathematical experiment 1

Conclusions:
 $\left\{\begin{array}{l}a<b \Rightarrow \lambda_{1} \text { decreases } \\ a>b \Rightarrow \lambda_{1} \text { increases }\end{array}\right.$

Mathematical experiment 1

Mathematical experiment 1

Conclusions:

$$
\left\{\begin{aligned}
a<b & \Rightarrow \lambda_{1} \text { decreases } \\
a>b & \Rightarrow \lambda_{1} \text { increases }
\end{aligned}\right.
$$

Theorem 2 is sharp!

Mathematical experiment 2

Mathematical experiment 2

The spectral gap always decreases!

Theorem 1 works here!

Cutting and deleting edges

Two tendencies as before:

- Cutting an edge removes certain connections $\Rightarrow \lambda_{1} \searrow$
- Deleting an edge or a piece of it reduces the volume $\Rightarrow \lambda_{1} \nearrow$

One can estimate the length of a piece that can be cut away from the edge so that the snectral gan decreases:

Cutting and deleting edges

Two tendencies as before:

- Cutting an edge removes certain connections $\Rightarrow \lambda_{1} \searrow$
- Deleting an edge or a piece of it reduces the volume $\Rightarrow \lambda_{1} \nearrow$

Theorem

Γ - graph of length \mathcal{L}. We cut of a piece from the edge connecting V_{1} and V_{2}. If

$$
\left(\max _{\psi_{1}: \operatorname{Ls}^{\operatorname{st}}(\Gamma) \psi_{1}=\lambda_{1} \psi_{1}} \frac{\left(\psi_{1}\left(V_{1}\right)-\psi_{1}\left(V_{2}\right)\right)^{2}}{\left(\psi_{1}\left(V_{1}\right)+\psi_{1}\left(V_{2}\right)\right)^{2}} \cot ^{2} \frac{k_{1} \ell}{2}-1\right) \frac{k_{1}}{2} \cot \frac{k_{1} \ell}{2} \geq(\mathcal{L}-\ell)^{-1}
$$

then

$$
\lambda_{1}\left(\Gamma^{*}\right) \leq \lambda_{1}(\Gamma) .
$$

Cutting and deleting edges

Two tendencies as before:

- Cutting an edge removes certain connections $\Rightarrow \lambda_{1} \searrow$
- Deleting an edge or a piece of it reduces the volume $\Rightarrow \lambda_{1} \nearrow$

Theorem

Γ - graph of length \mathcal{L}. We cut of a piece from the edge connecting V_{1} and V_{2}. If

$$
\left(\max _{\psi_{1}: \mathrm{Ls}^{\mathrm{st}}(\Gamma) \psi_{1}=\lambda_{1} \psi_{1}} \frac{\left(\psi_{1}\left(V_{1}\right)-\psi_{1}\left(V_{2}\right)\right)^{2}}{\left(\psi_{1}\left(V_{1}\right)+\psi_{1}\left(V_{2}\right)\right)^{2}} \cot ^{2} \frac{k_{1} \ell}{2}-1\right) \frac{k_{1}}{2} \cot \frac{k_{1} \ell}{2} \geq(\mathcal{L}-\ell)^{-1}
$$

then

$$
\lambda_{1}\left(\Gamma^{*}\right) \leq \lambda_{1}(\Gamma) .
$$

One can estimate the length of a piece that can be cut away from the edge so that the spectral gap decreases:

$$
\begin{gathered}
\psi_{1}(x)=\alpha \sin k_{1}\left(x-x^{*}\right)+\beta \cos k_{1}\left(x-x^{*}\right) \Rightarrow \\
\ell \leq \min \left\{\frac{\pi}{2 k_{1}}, \frac{\pi}{4}(\mathcal{L}-\ell) \max _{\psi_{1}: \operatorname{sst}^{2}(\Gamma) \psi_{1}=\lambda_{1} \psi_{1}}\left(\frac{\alpha^{2}}{\beta^{2}}-1\right)\right\} .
\end{gathered}
$$

