On spectral gap for quantum graphs

Pavel Kurasov (Stockholm)

Sergei Naboko (S:t Petersburg) & Gabriela Malenova (Prague)

May 26, 2013

Chaos 006

1 Introduction

- Definitions
- Elementary properties
- Questions
- History
- 2 Minimizing the spectral gap
- **3** Adding edges
- Mathematical experiments
- **5** Cutting and deleting edges

Quantum graph

• Metric graph

Differential expression on the edges

$$\ell_{q,a} = \left(i\frac{d}{dx} + a(x)\right)^2 + q(x)$$

Matching conditions
 Via irreducible unitary matrices S^m associated with each internal vertex V_m

$$i(S^m - I)\vec{\psi}_m = (S^m + I)\partial\vec{\psi}_m, \ m = 1, 2, \dots, M.$$

Quantum graph

• Metric graph

• Differential expression on the edges

$$\ell_{q,a} = \left(i\frac{d}{dx} + a(x)\right)^2 + q(x)$$

Matching conditions
 Via irreducible unitary matrices S^m associated with each internal vertex V_m

$$i(S^m - I)\vec{\psi}_m = (S^m + I)\partial\vec{\psi}_m, \ m = 1, 2, \dots, M.$$

Quantum graph

• Metric graph

• Differential expression on the edges

$$\ell_{q,a} = \left(i\frac{d}{dx} + a(x)\right)^2 + q(x)$$

• Matching conditions

Via irreducible unitary matrices S^m associated with each internal vertex V_m

$$i(S^m - I)\vec{\psi}_m = (S^m + I)\partial\vec{\psi}_m, \ m = 1, 2, \dots, M.$$

Standard Laplacian

Metric graph

• Differential expression on the edges

$$\ell_{q,a} = -\frac{d^2}{dx^2}$$

• Standard matching conditions

(the function is continuous at V_m , the sum of normal derivatives is zero.

Spectral properties

Our assumption:

• The metric graph Γ is connected and formed by a finite number of compact edges.

Properties:

The spectrum is discrete and tends to ∞ satisfying Weyl's asymptotic law

$$\lambda_n \sim \left(rac{\pi}{\mathcal{L}}
ight) n^2$$

 $\lambda_0 = 0$ is a simple eigenvalue with the eigenfunction $\psi_0 = 1$.

The asymptotic behavior of the spectrum determines the Euler characteristics of the underlying metric graph.

The spectral gap $\lambda_1 - \lambda_0$ coincides with λ_1 .

Discrete graphs:

M. Fiedler: the spectral gap for **discrete Laplacians** is the measure of their connectivity $\Rightarrow \lambda_1$ is called the **algebraic connectivity**.

Spectral properties

Our assumption:

• The metric graph Γ is connected and formed by a finite number of compact edges.

Properties:

The spectrum is discrete and tends to ∞ satisfying Weyl's asymptotic law

$$\lambda_n \sim \left(rac{\pi}{\mathcal{L}}
ight) n^2$$

 $\lambda_0 = 0$ is a simple eigenvalue with the eigenfunction $\psi_0 = 1$.

The asymptotic behavior of the spectrum determines the Euler characteristics of the underlying metric graph.

The spectral gap $\lambda_1 - \lambda_0$ coincides with λ_1 .

Discrete graphs:

M. Fiedler: the spectral gap for **discrete Laplacians** is the measure of their connectivity $\Rightarrow \lambda_1$ is called the **algebraic connectivity**.

Spectral properties

Our assumption:

• The metric graph Γ is connected and formed by a finite number of compact edges.

Properties:

The spectrum is discrete and tends to ∞ satisfying Weyl's asymptotic law

$$\lambda_n \sim \left(rac{\pi}{\mathcal{L}}
ight) n^2$$

 $\lambda_0 = 0$ is a simple eigenvalue with the eigenfunction $\psi_0 = 1$.

The asymptotic behavior of the spectrum determines the Euler characteristics of the underlying metric graph.

The spectral gap $\lambda_1 - \lambda_0$ coincides with λ_1 .

Discrete graphs:

M. Fiedler: the spectral gap for **discrete Laplacians** is the measure of their connectivity $\Rightarrow \lambda_1$ is called the **algebraic connectivity**.

Our questions today

- How does spectral gap depend on connectivity?
- What happens to the spectral gap as new edges are added to a graph?
- Which graphs have the smallest spectral gap?
- Explicit estimates for the spectral gap?

• The spectral gap can be calculated using Rayleigh quotient

$$\lambda_{1}(\Gamma) = \min_{\substack{\psi \perp 1 \\ \psi \in C(\Gamma)}} \frac{\int_{\Gamma} |\psi'|^{2} dx}{\int_{\Gamma} |\psi|^{2} dx}.$$
(1)

- Joining two vertices into one increases the spectral gap, since the number of admissible functions in (1) decreases.
- L. Friedlander (2005): among all graphs with the same total length single interval-graph has the smallest spectral gap
 - ▶ We learned about the proof after our paper was accomplished
 - The proof uses symmetrization technique and is irrelevant to the topology of the underlying graph
 "First it is a first to an and the increase literation of the topology of the underlying graph
- P. Exner and M. Jex (2012) demonstrated unusual behavior of the spectral gap for Quantum graphs with delta interactions at the vertices.

• The spectral gap can be calculated using Rayleigh quotient

$$\lambda_{1}(\Gamma) = \min_{\substack{\psi \perp 1 \\ \psi \in C(\Gamma)}} \frac{\int_{\Gamma} |\psi|^{2} dx}{\int_{\Gamma} |\psi|^{2} dx}.$$
(1)

- Joining two vertices into one increases the spectral gap, since the number of admissible functions in (1) decreases.
- L. Friedlander (2005): among all graphs with the same total length single interval-graph has the smallest spectral gap
 - We learned about the proof after our paper was accomplished
- P. Exner and M. Jex (2012) demonstrated unusual behavior of the spectral gap for Quantum graphs with delta interactions at the vertices.

• The spectral gap can be calculated using Rayleigh quotient

$$\lambda_{1}(\Gamma) = \min_{\substack{\psi \perp 1 \\ \psi \in C(\Gamma)}} \frac{\int_{\Gamma} |\psi|^{2} dx}{\int_{\Gamma} |\psi|^{2} dx}.$$
(1)

- Joining two vertices into one increases the spectral gap, since the number of admissible functions in (1) decreases.
- L. Friedlander (2005): among all graphs with the same total length single interval-graph has the smallest spectral gap
 - ► We learned about the proof after our paper was accomplished
 - The proof uses symmetrization technique and is irrelevant to the topology of the underlying graph "First it is sufficient to prove the inequality ... for trees" (L. Friedlander)

• P. Exner and M. Jex (2012) demonstrated unusual behavior of the spectral gap for Quantum graphs with delta interactions at the vertices.

• The spectral gap can be calculated using Rayleigh quotient

$$\lambda_{1}(\Gamma) = \min_{\substack{\psi \perp 1 \\ \psi \in C(\Gamma)}} \frac{\int_{\Gamma} |\psi'|^{2} dx}{\int_{\Gamma} |\psi|^{2} dx}.$$
(1)

- Joining two vertices into one increases the spectral gap, since the number of admissible functions in (1) decreases.
- L. Friedlander (2005): among all graphs with the same total length single interval-graph has the smallest spectral gap
 - ► We learned about the proof after our paper was accomplished
 - The proof uses symmetrization technique and is irrelevant to the topology of the underlying graph "First it is sufficient to prove the inequality ... for trees" (L. Friedlander)
- P. Exner and M. Jex (2012) demonstrated unusual behavior of the spectral gap for Quantum graphs with delta interactions at the vertices.

Estimate for the spectral gap

Theorem 1. (Friedlander, Ku-Naboko)

$$\lambda_1(\Gamma) \geq \lambda_1(\Delta_{\mathcal{L}(\Gamma)}) = \left(\frac{\pi}{\mathcal{L}(\Gamma)}\right)^2.$$

Proof

$$\lambda_1 = \frac{\int_{\Gamma} |\psi_1'|^2 dx}{\int_{\Gamma} |\psi_1|^2 dx}$$

 ψ_1 - the eigenfunction corresponding to λ_1 $\Gamma \Rightarrow \Gamma^2$ - double cover of Γ - the graph with the same set of vertices but with all edges doubled

$$\lambda_1 = \frac{\int_{\Gamma^2} |\psi_1'|^2 dx}{\int_{\Gamma^2} |\psi_1|^2 dx}$$

 Γ^2 is a graph with even degrees of all vertices \Rightarrow there exists Eulerian path going along every edge precisely one time. This path can be identified with the loop of double length $S_{2\mathcal{L}}$.

$$\lambda_1 \geq \min \frac{\int_{S_{2\mathcal{L}}} |u'|^2 dx}{\int_{S_{2\mathcal{L}}} |u|^2 dx} = \lambda_1(S_{2\mathcal{L}}) = \lambda_1(\Delta_{\mathcal{L}}).$$

Corollary 1 Among all graphs of the same total length single interval has the smallest spectral gap. Geometric version of Ambartsumian theorem (1929).

Corollary 2 Similar estimates for all higher eigenavlues.

Corollary 3 (Ku-Naboko)

If the degrees of all vertices in $\boldsymbol{\Gamma}$ are even, then the following estimate holds

$$\lambda_1(\Gamma) \geq \lambda_1(S_\mathcal{L}) = 4\lambda_1(\Delta_{\mathcal{L}(\Gamma)}) = 4\left(rac{\pi}{\mathcal{L}(\Gamma)}
ight)^2.$$

Proof: no need to double the edges Cannot be proven using symmetrization technique.

Corollary 1

Among all graphs of the same total length single interval has the smallest spectral gap. Geometric version of Ambartsumian theorem (1929).

Corollary 2

Similar estimates for all higher eigenavlues.

Corollary 3 (Ku-Naboko)

If the degrees of all vertices in Γ are even, then the following estimate holds

$$\lambda_1(\Gamma) \geq \lambda_1(S_{\mathcal{L}}) = 4\lambda_1(\Delta_{\mathcal{L}(\Gamma)}) = 4\left(rac{\pi}{\mathcal{L}(\Gamma)}
ight)^2$$

Proof: no need to double the edges Cannot be proven using symmetrization technique.

Corollary 1

Among all graphs of the same total length single interval has the smallest spectral gap.

Geometric version of Ambartsumian theorem (1929).

Corollary 2

Similar estimates for all higher eigenavlues.

Corollary 3 (Ku-Naboko)

If the degrees of all vertices in $\boldsymbol{\Gamma}$ are even, then the following estimate holds

$$\lambda_1(\Gamma) \geq \lambda_1(\mathcal{S}_{\mathcal{L}}) = 4\lambda_1(\Delta_{\mathcal{L}(\Gamma)}) = 4\left(rac{\pi}{\mathcal{L}(\Gamma)}
ight)^2$$

Proof: no need to double the edges Cannot be proven using symmetrization technique.

Adding an edge

Adding an edge increases the total volume of the graph \Rightarrow the first eigenvalue has a tendency to decrease (in contrast to discrete graphs!).

Adding pending edge

Theorem

In the first eigenvalues satisfy the following inequality:

 $\lambda_1(\Gamma) \ge \lambda_1(\Gamma').$

3 The equality $\lambda_1(\Gamma) = \lambda_1(\Gamma')$ holds if and only if every eigenfunction ψ_1 corresponding to $\lambda_1(\Gamma)$ is equal to zero at V_1

 $\psi_1(V_1)=0.$

Adding an edge

Adding an edge increases the total volume of the graph \Rightarrow the first eigenvalue has a tendency to decrease (in contrast to discrete graphs!).

Adding pending edge Theorem

• The first eigenvalues satisfy the following inequality:

$$\lambda_1(\Gamma) \geq \lambda_1(\Gamma').$$

The equality λ₁(Γ) = λ₁(Γ') holds if and only if every eigenfunction ψ₁ corresponding to λ₁(Γ) is equal to zero at V₁

$$\psi_1(V_1)=0.$$

Adding an edge between two exciting vertices

Two different tendencies:

- Adding an edge increases the volume $\Rightarrow \lambda_1 \searrow$
- Connecting two vertices introduces new restrictions $\Rightarrow \lambda_1 \nearrow$

Theorem 1

If the eigenfunction ψ_1 corresponding to the first excited eigenvalue can be chosen such that

 $\psi_1(V_1)=\psi_1(V_2),$

then:

$$\lambda_1(\Gamma) \ge \lambda_1(\Gamma').$$

Theorem 2

If the length of the new edge is greater than the total length of the original graph, then the spectral gap decreases.

Adding an edge between two exciting vertices

Two different tendencies:

- Adding an edge increases the volume $\Rightarrow \lambda_1 \searrow$
- Connecting two vertices introduces new restrictions $\Rightarrow \lambda_1 \nearrow$

Theorem 1

If the eigenfunction ψ_1 corresponding to the first excited eigenvalue can be chosen such that

 $\psi_1(V_1)=\psi_1(V_2),$

then:

$$\lambda_1(\Gamma) \geq \lambda_1(\Gamma').$$

Theorem 2

If the length of the new edge is greater than the total length of the original graph, then the spectral gap decreases.

Adding an edge between two exciting vertices

Two different tendencies:

- Adding an edge increases the volume $\Rightarrow \lambda_1 \searrow$
- Connecting two vertices introduces new restrictions $\Rightarrow \lambda_1 \nearrow$

Theorem 1

If the eigenfunction ψ_1 corresponding to the first excited eigenvalue can be chosen such that

$$\psi_1(V_1)=\psi_1(V_2),$$

then:

$$\lambda_1(\Gamma) \geq \lambda_1(\Gamma').$$

Theorem 2

If the length of the new edge is greater than the total length of the original graph, then the spectral gap decreases.

Conclusions:

 $\begin{cases} a < b \Rightarrow \lambda_1 \text{ decreases} \\ a > b \Rightarrow \lambda_1 \text{ increases} \end{cases}$

Theorem 2 is sharp!

Conclusions:

 $\begin{cases} a < b \Rightarrow \lambda_1 \text{ decreases} \\ a > b \Rightarrow \lambda_1 \text{ increases} \end{cases}$

Theorem 2 is sharp!

Conclusions:

$$\left\{ \begin{array}{ll} \mathbf{a} < \mathbf{b} \quad \Rightarrow \quad \lambda_1 \text{ decreases} \\ \mathbf{a} > \mathbf{b} \quad \Rightarrow \quad \lambda_1 \text{ increases} \end{array} \right.$$

Theorem 2 is sharp!

The spectral gap always decreases!

Theorem 1 works here!

The spectral gap always decreases!

Theorem 1 works here!

Cutting and deleting edges

Two tendencies as before:

- Cutting an edge removes certain connections $\Rightarrow \lambda_1 \searrow$
- Deleting an edge or a piece of it reduces the volume $\Rightarrow \lambda_1 \nearrow$

Theorem

 Γ - graph of length $\mathcal{L}.$ We cut of a piece from the edge connecting V_1 and $V_2.$ If

$$\left(\max_{\psi_1: L^{\mathrm{st}}(\Gamma)\psi_1=\lambda_1\psi_1} \frac{(\psi_1(V_1)-\psi_1(V_2))^2}{(\psi_1(V_1)+\psi_1(V_2))^2} \cot^2 \frac{k_1\ell}{2} - 1\right) \frac{k_1}{2} \cot \frac{k_1\ell}{2} \ge (\mathcal{L}-\ell)^{-1},$$

then

$$\lambda_1(\Gamma^*) \leq \lambda_1(\Gamma).$$

One can estimate the length of a piece that can be cut away from the edge so that the spectral gap decreases:

$$\psi_1(x) = \alpha \sin k_1(x - x^*) + \beta \cos k_1(x - x^*) \Rightarrow$$
$$\ell \le \min \left\{ \frac{\pi}{2k_1}, \ \frac{\pi}{4} (\mathcal{L} - \ell) \max_{\psi_1: L^{\mathrm{st}}(\Gamma) \psi_1 = \lambda_1 \psi_1} \left(\frac{\alpha^2}{\beta^2} - 1 \right) \right\}.$$

Cutting and deleting edges

Two tendencies as before:

- Cutting an edge removes certain connections $\Rightarrow \lambda_1 \searrow$
- Deleting an edge or a piece of it reduces the volume $\Rightarrow \lambda_1 \nearrow$

Theorem

 Γ - graph of length $\mathcal{L}.$ We cut of a piece from the edge connecting V_1 and $V_2.$ If

$$\left(\max_{\psi_1: L^{\rm st}(\Gamma)\psi_1=\lambda_1\psi_1} \frac{(\psi_1(V_1)-\psi_1(V_2))^2}{(\psi_1(V_1)+\psi_1(V_2))^2}\cot^2\frac{k_1\ell}{2}-1\right)\frac{k_1}{2}\cot\frac{k_1\ell}{2} \ge (\mathcal{L}-\ell)^{-1},$$

then

$$\lambda_1(\Gamma^*) \leq \lambda_1(\Gamma).$$

One can estimate the length of a piece that can be cut away from the edge so that the spectral gap decreases:

$$\psi_1(x) = \alpha \sin k_1(x - x^*) + \beta \cos k_1(x - x^*) \Rightarrow$$
$$\ell \le \min \left\{ \frac{\pi}{2k_1}, \ \frac{\pi}{4} (\mathcal{L} - \ell) \max_{\psi_1: L^{\text{st}}(\Gamma) \psi_1 = \lambda_1 \psi_1} \left(\frac{\alpha^2}{\beta^2} - 1 \right) \right\}.$$

Cutting and deleting edges

Two tendencies as before:

- Cutting an edge removes certain connections $\Rightarrow \lambda_1 \searrow$
- Deleting an edge or a piece of it reduces the volume $\Rightarrow \lambda_1 \nearrow$

Theorem

 Γ - graph of length $\mathcal{L}.$ We cut of a piece from the edge connecting V_1 and $V_2.$ If

$$\left(\max_{\psi_1:\mathcal{L}^{\rm st}(\Gamma)\psi_1=\lambda_1\psi_1}\frac{(\psi_1(V_1)-\psi_1(V_2))^2}{(\psi_1(V_1)+\psi_1(V_2))^2}\cot^2\frac{k_1\ell}{2}-1\right)\frac{k_1}{2}\cot\frac{k_1\ell}{2} \geq (\mathcal{L}-\ell)^{-1},$$

then

$$\lambda_1(\Gamma^*) \leq \lambda_1(\Gamma).$$

One can estimate the length of a piece that can be cut away from the edge so that the spectral gap decreases:

$$\begin{split} \psi_1(x) &= \alpha \sin k_1(x - x^*) + \beta \cos k_1(x - x^*) \Rightarrow \\ \ell &\leq \min \left\{ \frac{\pi}{2k_1}, \ \frac{\pi}{4} (\mathcal{L} - \ell) \max_{\psi_1 : L^{\mathrm{st}}(\Gamma) \psi_1 = \lambda_1 \psi_1} \left(\frac{\alpha^2}{\beta^2} - 1 \right) \right\}. \end{split}$$

Kurasov (Stockholm)