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Quantum graph

Metric graph
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Differential expression on the edges

`q,a =

(
i
d

dx
+ a(x)

)2

+ q(x)

Matching conditions
Via irreducible unitary matrices Sm associated with each internal vertex Vm

i(Sm − I )~ψm = (Sm + I )∂ ~ψm, m = 1, 2, . . . ,M.
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Standard Laplacian

Metric graph
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Differential expression on the edges

`q,a = − d2

dx2

Standard matching conditions{
the function is continuous at Vm,
the sum of normal derivatives is zero.
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Spectral properties

Our assumption:

The metric graph Γ is connected and formed by a finite number of compact
edges.

Properties:
The spectrum is discrete and tends to ∞ satisfying Weyl’s asymptotic law

λn ∼
(π
L

)
n2

λ0 = 0 is a simple eigenvalue with the eigenfunction ψ0 = 1.
The asymptotic behavior of the spectrum determines the Euler characteristics of
the underlying metric graph.
The spectral gap λ1 − λ0 coincides with λ1.
Discrete graphs:
M. Fiedler: the spectral gap for discrete Laplacians is the measure of their
connectivity ⇒ λ1 is called the algebraic connectivity.
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Our questions today

How does spectral gap depend on connectivity?

What happens to the spectral gap as new edges are added to a graph?

Which graphs have the smallest spectral gap?

Explicit estimates for the spectral gap?
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What was known?

The spectral gap can be calculated using Rayleigh quotient

λ1(Γ) = min
ψ⊥1

ψ ∈ C (Γ)

∫
Γ
|ψ′|2dx∫

Γ
|ψ|2dx

. (1)

Joining two vertices into one increases the spectral gap, since the number
of admissible functions in (1) decreases.

L. Friedlander (2005): among all graphs with the same total length single
interval-graph has the smallest spectral gap

I We learned about the proof after our paper was accomplished
I The proof uses symmetrization technique and is irrelevant to the topology of

the underlying graph
“First it is sufficient to prove the inequality . . . for trees”(L. Friedlander)

P. Exner and M. Jex (2012) demonstrated unusual behavior of the spectral
gap for Quantum graphs with delta interactions at the vertices.

Kurasov (Stockholm) Spectral gap for quantum graphs Chaos 006, Warszawa 2013 7 / 14



What was known?

The spectral gap can be calculated using Rayleigh quotient

λ1(Γ) = min
ψ⊥1

ψ ∈ C (Γ)

∫
Γ
|ψ′|2dx∫

Γ
|ψ|2dx

. (1)

Joining two vertices into one increases the spectral gap, since the number
of admissible functions in (1) decreases.

L. Friedlander (2005): among all graphs with the same total length single
interval-graph has the smallest spectral gap

I We learned about the proof after our paper was accomplished
I The proof uses symmetrization technique and is irrelevant to the topology of

the underlying graph
“First it is sufficient to prove the inequality . . . for trees”(L. Friedlander)

P. Exner and M. Jex (2012) demonstrated unusual behavior of the spectral
gap for Quantum graphs with delta interactions at the vertices.

Kurasov (Stockholm) Spectral gap for quantum graphs Chaos 006, Warszawa 2013 7 / 14



What was known?

The spectral gap can be calculated using Rayleigh quotient

λ1(Γ) = min
ψ⊥1

ψ ∈ C (Γ)

∫
Γ
|ψ′|2dx∫

Γ
|ψ|2dx

. (1)

Joining two vertices into one increases the spectral gap, since the number
of admissible functions in (1) decreases.

L. Friedlander (2005): among all graphs with the same total length single
interval-graph has the smallest spectral gap

I We learned about the proof after our paper was accomplished
I The proof uses symmetrization technique and is irrelevant to the topology of

the underlying graph
“First it is sufficient to prove the inequality . . . for trees”(L. Friedlander)

P. Exner and M. Jex (2012) demonstrated unusual behavior of the spectral
gap for Quantum graphs with delta interactions at the vertices.

Kurasov (Stockholm) Spectral gap for quantum graphs Chaos 006, Warszawa 2013 7 / 14



What was known?

The spectral gap can be calculated using Rayleigh quotient

λ1(Γ) = min
ψ⊥1

ψ ∈ C (Γ)

∫
Γ
|ψ′|2dx∫

Γ
|ψ|2dx

. (1)

Joining two vertices into one increases the spectral gap, since the number
of admissible functions in (1) decreases.

L. Friedlander (2005): among all graphs with the same total length single
interval-graph has the smallest spectral gap

I We learned about the proof after our paper was accomplished
I The proof uses symmetrization technique and is irrelevant to the topology of

the underlying graph
“First it is sufficient to prove the inequality . . . for trees”(L. Friedlander)

P. Exner and M. Jex (2012) demonstrated unusual behavior of the spectral
gap for Quantum graphs with delta interactions at the vertices.

Kurasov (Stockholm) Spectral gap for quantum graphs Chaos 006, Warszawa 2013 7 / 14



Estimate for the spectral gap
Theorem 1. (Friedlander, Ku-Naboko)

λ1(Γ) ≥ λ1(∆L(Γ)) =

(
π

L(Γ)

)2

.

Proof

λ1 =

∫
Γ
|ψ′1|2dx∫

Γ
|ψ1|2dx

ψ1 - the eigenfunction corresponding to λ1

Γ⇒ Γ2 - double cover of Γ - the graph with the same set of vertices but with all
edges doubled

λ1 =

∫
Γ2 |ψ′1|2dx∫
Γ2 |ψ1|2dx

Γ2 is a graph with even degrees of all vertices ⇒ there exists Eulerian path
going along every edge precisely one time. This path can be identified with the
loop of double length S2L.

λ1 ≥ min

∫
S2L
|u′|2dx∫

S2L
|u|2dx

= λ1(S2L) = λ1(∆L).
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Corollary 1
Among all graphs of the same total length single interval has the smallest
spectral gap.
Geometric version of Ambartsumian theorem (1929).

Corollary 2
Similar estimates for all higher eigenavlues.

Corollary 3 (Ku-Naboko)
If the degrees of all vertices in Γ are even, then the following estimate holds

λ1(Γ) ≥ λ1(SL) = 4λ1(∆L(Γ)) = 4

(
π

L(Γ)

)2

.

Proof: no need to double the edges
Cannot be proven using symmetrization technique.
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Adding an edge

Adding an edge increases the total volume of the graph ⇒ the first eigenvalue
has a tendency to decrease (in contrast to discrete graphs!).

Adding pending edge
Theorem

1 The first eigenvalues satisfy the following inequality:

λ1(Γ) ≥ λ1(Γ′).

2 The equality λ1(Γ) = λ1(Γ′) holds if and only if every eigenfunction ψ1

corresponding to λ1(Γ) is equal to zero at V1

ψ1(V1) = 0.
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Adding an edge between two exciting vertices
Two different tendencies:

Adding an edge increases the volume ⇒ λ1 ↘
Connecting two vertices introduces new restrictions ⇒ λ1 ↗

Theorem 1
If the eigenfunction ψ1 corresponding to the first excited eigenvalue can be
chosen such that

ψ1(V1) = ψ1(V2),

then:
λ1(Γ) ≥ λ1(Γ′).

Theorem 2
If the length of the new edge is greater than the total length of the original
graph, then the spectral gap decreases.
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Mathematical experiment 1

⇒





λ1 =
(π
a

)2

λ1 =

(
2π

a + b

)2

Conclusions: {
a < b ⇒ λ1 decreases
a > b ⇒ λ1 increases

Theorem 2 is sharp!
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Mathematical experiment 2





⇒







The spectral gap always decreases!

Theorem 1 works here!
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Cutting and deleting edges
Two tendencies as before:

Cutting an edge removes certain connections ⇒ λ1 ↘
Deleting an edge or a piece of it reduces the volume ⇒ λ1 ↗

Theorem
Γ - graph of length L. We cut of a piece from the edge connecting V1 and V2.
If (

max
ψ1:Lst(Γ)ψ1=λ1ψ1

(ψ1(V1)− ψ1(V2))2

(ψ1(V1) + ψ1(V2))2
cot2 k1`

2
− 1

)
k1

2
cot

k1`

2
≥ (L − `)−1,

then
λ1(Γ∗) ≤ λ1(Γ).

One can estimate the length of a piece that can be cut away from the edge so
that the spectral gap decreases:

ψ1(x) = α sin k1(x − x∗) + β cos k1(x − x∗)⇒

` ≤ min

{
π

2k1
,
π

4
(L − `) max

ψ1:Lst(Γ)ψ1=λ1ψ1

(
α2

β2
− 1

)}
.
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