Non-monotonic quantum-to-classical transition in multi-particle interference

Andreas Buchleitner

Quantum optics and statistics
Institute of Physics, Albert Ludwigs University of Freiburg

In Collaboration with . . .

... M. Tichy, F. Mintert, Y.-S. Ra, H.-T. Lim, O. Kwon, Y.-H. Kim

Single particle quantum interference

• Coherent superposition of single particle amplitudes

[Feynman, Lecture Notes on Quantum Mechanics]

• Which-way information induces decoherence

Also true for significantly larger objects

What about many-particle systems, e.g. (but not only) quantum computers?

N cold atoms in a matrix [Birkl et al.]

many particle quantum register

 $|011001011101010001\rangle$

rely on coherent superposition/dynamics of 2^N many particle states

```
a|011001011101010001\rangle 
 + b|001001011101010101\rangle 
 + c|011001001101110011\ 
 + d|111001010001010001\ 
 + . . .
```

what about (in-)distinguishability and/or (de-)coherence?

The Hong-Ou-Mandel effect

one photon in each mode a and b – distinguishability controlled by path delay x

coincident detection in output modes \boldsymbol{c} and \boldsymbol{d}

- coincidence probability if distinguishable: P(2; 1, 1) = 1/2
- coincidence probability if indistinguishable: P(2; 1, 1) = 0

if indistinguishable: destructive interference of two two-particle trajectories

[Shi & Alley (1986, 1988); Hong, Ou & Mandel (1987)]

What happens "in between"?

Continuous distinguishability-transition

inject (Gaussian) photon wave packet state $|1_{t_1}\rangle$ ($|1_{t_2}\rangle$) with beam splitter arrival time t_1 (t_2) in mode a (b) – then (Gram-Schmidt):

$$|1_{t_2}\rangle = \alpha |1_{t_1}\rangle + \sqrt{1 - \alpha^2} |\tilde{1}_{t_1}\rangle, \ \alpha^2 = \exp(-(\Delta\omega)^2 (t_2 - t_1)^2 / 2)$$

HOM two-photon state impinging on beam splitter:

$$a_{t_1}^{\dagger} b_{t_2}^{\dagger} |0\rangle = \alpha |1, 1\rangle + \sqrt{1 - \alpha^2} |1, \tilde{1}\rangle,$$

with the photons in $|1,1\rangle$ ($|1,\tilde{1}\rangle$) in(-distinguishable) – $\alpha \in \{0,1\}$ quantifies distinguishability (fully indistinguishable for $\alpha = 1$).

Ergo: Monotonic disappearance of interference signal in coincident detection as α decreases!

Experimental confirmation

The more two-particle which-way information, the less interference – as for single-particle scenario!

Something new happens for more particles!

Inject **two photons per mode**, and write in Gram-Schmidt decomposition with respect to temporal overlap:

$$\frac{1}{2}(a_{t_1}^{\dagger})^2(b_{t_2}^{\dagger})^2|0\rangle = \alpha^2|2,2\rangle + \sqrt{2\alpha}\sqrt{1-\alpha^2}|2,1,\tilde{1}\rangle + (1-\alpha^2)|2,\tilde{2}\rangle,$$

For more than one photons per mode, there appear partially distinguishable contributions – here, $|2,1,\tilde{1}\rangle$ implies the interference of three-particle rather than four-particle paths, with weight $W_{\mathrm{type}}^{(N;m,n)}$ non-monotonic in $\alpha!$

General expression for (m,n)-event probability:

$$P(N; m, n) = \sum_{\text{type}} p_{\text{type}}^{(N; m, n)} W_{\text{type}}^{(N; m, n)}$$

"type" – fully indistinguishable, fully distinguishable, partially distinguishable $p_{\rm type}$ determined by mode mapping $a^{\dagger} \rightarrow (c^{\dagger} + d^{\dagger})/\sqrt{2}$, $b^{\dagger} \rightarrow (c^{\dagger} - d^{\dagger})/\sqrt{2}$.

Non-monotonic quantum-to-classical transition

With increasing distinguishability of the particles, the order of many-particle interferences is reduced from four- over three- to two-particle paths, with non-monotonic weights! Gaining which-path information at different multi-particle orders generically leads to a *non-monotonic* quantum-to-classical transition!

Conclusion/Perspective

- The distinguishability transition affects different orders of many-particle interferences differently!
- Quantum interference in correlation functions thus fades away non-monotonically, in general!
- A probe for different types of system-environment interactions?

Phys. Rev. A 83, 062111 (2011); PNAS 110, 1227 (2013) –
PhD Malte Tichy, Freiburg 2011; diploma Klaus Mayer, Freiburg 2011 –
www.quantum.uni-freiburg.de