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Periodic potentials

Electrons in a periodic structure

E.g., Kronnig-Penny model
(
− d2

dx2 + V0 ∑∞
n=−∞ δ (x− na)

)
ψ = k2ψ

Gives rise to band structure (measured in terms of k).

Band width →
k→∞

constant

Gap width →
k→∞

0

⇒Average band density = 1

Gap creation mechanisms
Bohr-Sommerfeld conjecture -
occurence of a finite number of gaps

figures taken from http://nanohub.org/
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Periodic graphs

Consider − d2

dx2 ψ = k2ψ on a periodic graph.
pσ := the band density, i.e., the probability that a
randomly chosen momentum belongs to the spectrum σ.

How does pσ depends on the decoration graph?

(a)

(b) (c) (d) (e)

k

Denote by pσ (K) the band density in [0, K]

so that pσ := limK→∞ pσ (K)
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Periodic graphs

0 2000 4000 6000 8000 10000

0.634

0.637

0.64

0.643

K

p
σ

(K
)

 

 

1(b)

1(c)

1(d)
pσ

k
K0

(a)

(b) (c) (d) (e)

Theorem (RB, Berkolaiko)
1 The limit pσ := limK→∞ pσ (K) exists.
2 If there exists at least one gap, then pσ < 1.

If there exists at least one non-flat band, then pσ > 0.
3 If the edge lengths are incommensurate,

then pσ does not depend on their specific values.
4 pσ is independent on some details of the decoration’s topology.

Remark - the theorem is also valid for more than 1d periodicity.
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Periodic is Magnetic
The band structure of graphs - previous results:
metric - Avron, Exner, Last (’94); Kuchment (’04);

Brüning, Geyler, Pankrashkin (’07)
discrete - Schenker, Aizenman (’00)

Fact (An equivalent problem)
a compact graph with a magnetic flux:(
−i d

dx + A(x)
)2

ψ = k2ψ ,

with magnetic flux α =
∮

cycle A (x) dx.

The nth band is Bn := [minα kn (α) , maxα kn (α)]

pσ (K) := |(∪nBn)∩[0,K]|
|[0,K]|

pσ := limK→∞ pσ (K)
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A glance at the proof
Theorem (RB, Berkolaiko)

1 The limit pσ = limK→∞ pσ (K) exists.
2 If there exists at least one gap, then pσ < 1.
3 If edge lengths are incommensurate,

then pσ does not depend on their specific values.
4 pσ is independent on some details of the decoration’s topology.
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⇔

Torus idea from Barra, Gaspard (’00)

Due to ergodic motion, pσ equals the shaded area on the torus.
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pσ =
2

π2

∫ π

0
arctan (2 cot (θ/2)) dθ

≈ 0.637

for all decorations (b)-(d)
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Further directions

How does pσ depend on the topology of the decoration and the periodicity?

Bounds on possible sizes of bands and gaps

Understanding better the gap openning mechanism

Adding potentials and non-trivial vertex conditions

Nodal count of the eigenfunctions on the edges of the Brillouin zone
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