The momentum band density of periodic graphs

Ram Band

University of Bristol

Joint work with Gregory Berkolaiko

6th Workshop on Quantum Chaos and Localisation Phenomena, Warsaw, May 2013

Periodic potentials

Electrons in a periodic structure

E.g., Kronnig-Penny model
$$\left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V_0 \sum_{n=-\infty}^{\infty} \delta\left(x - na\right)\right) \psi = k^2 \psi$$

V(x) V_0 (1) (2) X

Gives rise to band structure (measured in terms of k).

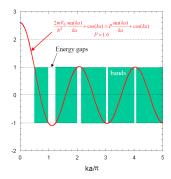
Periodic potentials

Electrons in a periodic structure

$$E.g.,\ Kronnig-Penny\ model$$

$$\left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V_0 \sum_{n=-\infty}^{\infty} \delta\left(x - na\right)\right) \psi = k^2 \psi$$

Gives rise to band structure (measured in terms of k).



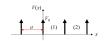
- Band width $\underset{k\to\infty}{\to}$ constant
- $\bullet \ \ \mathsf{Gap \ width} \ \mathop{\to}_{k\to\infty} 0$
 - \Rightarrow Average band density =1

figures taken from http://nanohub.org/

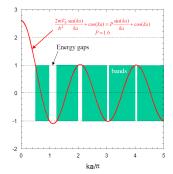
Periodic potentials

Electrons in a periodic structure

E.g., Kronnig-Penny model
$$\left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V_0 \textstyle\sum_{n=-\infty}^{\infty} \delta\left(x-na\right)\right) \psi = k^2 \psi$$



Gives rise to band structure (measured in terms of k).

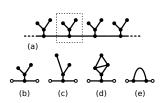


- Band width $\underset{k\to\infty}{\rightarrow}$ constant
- Gap width $\underset{k\to\infty}{\to} 0$
 - \Rightarrow Average band density = 1
- Gap creation mechanisms
- Bohr-Sommerfeld conjecture occurence of a finite number of gaps

figures taken from http://nanohub.org/

Consider $-\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi=k^2\psi$ on a periodic graph. $p_\sigma:=$ the band density, i.e., the probability that a randomly chosen momentum belongs to the spectrum $\sigma.$

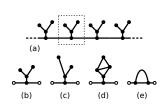
How does p_{σ} depends on the decoration graph?

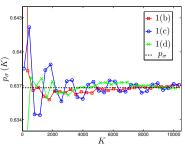


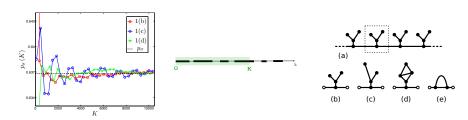
Consider $-rac{\mathrm{d}^2}{\mathrm{d}x^2}\psi=k^2\psi$ on a periodic graph. $p_\sigma:=$ the band density, i.e., the probability that a randomly chosen momentum belongs to the spectrum $\sigma.$

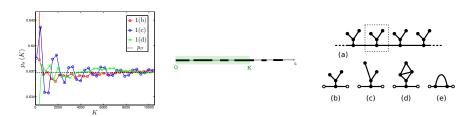
How does p_σ depends on the decoration graph?

Denote by $p_{\sigma}\left(K\right)$ the band density in $\left[0,K\right]$ so that $p_{\sigma}:=\lim_{K\to\infty}p_{\sigma}\left(K\right)$









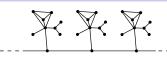
Theorem (RB, Berkolaiko)

- The limit $p_{\sigma} := \lim_{K \to \infty} p_{\sigma}(K)$ exists.
- ② If there exists at least one gap, then $p_{\sigma} < 1$. If there exists at least one non-flat band, then $p_{\sigma} > 0$.
- **3** If the edge lengths are incommensurate, then p_{σ} does not depend on their specific values.
- **1** p_{σ} is independent on some details of the decoration's topology.

Remark - the theorem is also valid for more than 1d periodicity.

Periodic is Magnetic

The band structure of graphs - previous results: metric - Avron, Exner, Last ('94); Kuchment ('04); Brüning, Geyler, Pankrashkin ('07) discrete - Schenker, Aizenman ('00)



Fact (An equivalent problem)

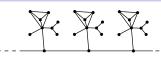
a compact graph with a magnetic flux:

$$\left(-i\frac{d}{dx} + A(x)\right)^2 \psi = k^2 \psi ,$$

with magnetic flux $\alpha = \oint_{cycle} A(x) dx$.

Periodic is Magnetic

The band structure of graphs - previous results: metric - Avron, Exner, Last ('94); Kuchment ('04); Brüning, Geyler, Pankrashkin ('07) discrete - Schenker, Aizenman ('00)



Fact (An equivalent problem)

a compact graph with a magnetic flux:

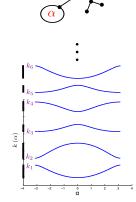
$$\left(-i\frac{d}{dx} + A(x)\right)^2 \psi = k^2 \psi ,$$
with magnetic flux

with magnetic flux $\alpha = \oint_{cycle} A(x) dx$.

The n^{th} band is $B_n := [\min_{\alpha} k_n(\alpha), \max_{\alpha} k_n(\alpha)]$

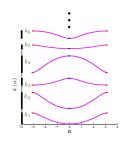
$$p_{\sigma}(K) := \frac{|(\cup_n B_n) \cap [0,K]|}{|[0,K]|}$$

$$p_{\sigma} := \lim_{K \to \infty} p_{\sigma}(K)$$



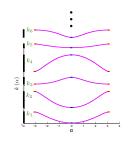
Theorem (RB, Berkolaiko)

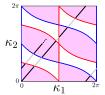
- **1** The limit $p_{\sigma} = \lim_{K \to \infty} p_{\sigma}(K)$ exists.
- **②** If there exists at least one gap, then $p_{\sigma} < 1$.
- ullet p_{σ} is independent on some details of the decoration's topology.



Theorem (RB, Berkolaiko)

- **1** The limit $p_{\sigma} = \lim_{K \to \infty} p_{\sigma}(K)$ exists.
- **②** If there exists at least one gap, then $p_{\sigma} < 1$.
- **1** If edge lengths are incommensurate, then p_{σ} does not depend on their specific values.
- ullet p_{σ} is independent on some details of the decoration's topology.

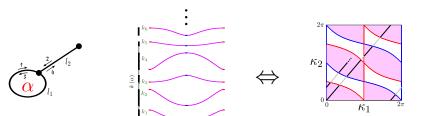




Torus idea from Barra, Gaspard ('00)

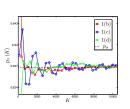
Theorem (RB, Berkolaiko)

- **1** The limit $p_{\sigma} = \lim_{K \to \infty} p_{\sigma}(K)$ exists.
- ② If there exists at least one gap, then $p_{\sigma} < 1$.
- **1** If edge lengths are incommensurate, then p_{σ} does not depend on their specific values.
- \bullet p_{σ} is independent on some details of the decoration's topology.



Torus idea from Barra, Gaspard ('00)

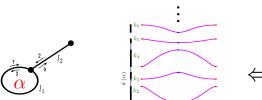
Due to ergodic motion, p_{σ} equals the shaded area on the torus.

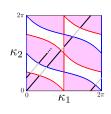


$$p_{\sigma} = \frac{2}{\pi^2} \int_0^{\pi} \arctan(2\cot(\theta/2)) d\theta$$

for all decorations (b)-(d)

 $(a) \qquad (b) \qquad (c) \qquad (d) \qquad (e)$



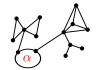


Due to ergodic motion, p_{σ} equals the shaded area on the torus.

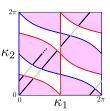
 ≈ 0.637

 \bullet How does p_σ depend on the topology of the decoration and the periodicity?

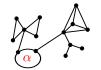
ullet How does p_σ depend on the topology of the decoration and the periodicity?

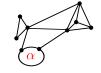


Bounds on possible sizes of bands and gaps

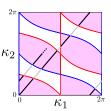


ullet How does p_σ depend on the topology of the decoration and the periodicity?





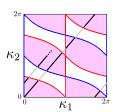
- Bounds on possible sizes of bands and gaps
- Understanding better the gap openning mechanism



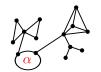
 \bullet How does p_σ depend on the topology of the decoration and the periodicity?



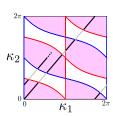
- Bounds on possible sizes of bands and gaps
- Understanding better the gap openning mechanism
- Adding potentials and non-trivial vertex conditions



 \bullet How does p_σ depend on the topology of the decoration and the periodicity?



- Bounds on possible sizes of bands and gaps
- Understanding better the gap openning mechanism
- Adding potentials and non-trivial vertex conditions



• Nodal count of the eigenfunctions on the edges of the Brillouin zone