KUTGERS

UNIVERSITY | NEW BRUNSWICK

Selfconsistent diagrammatic transport for light including time reversal symmetric entropy production Regine Frank^{1*}, Bart A. Van Tiggelen²

¹ Serin Physics Laboratory, Department of Physics and Astronomy Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA, email: regine.frank@googlemail.com, http://www.ppnec.org ² Université Grenoble Alpes, Centre National de la Recherche Scientifique, LPMMC, 38000 Grenoble, France 11th Workshop on Quantum Chaos and Localisation Phenomena 25 - 26 May 2023 - Warsaw, Poland

Transport of Light in Random Media including Absorption Gain – Mono- or Polydisperse Mie Resonators

- Always positive entropy production due to absorption and gain in complex also under time reversal
- Entropy production in lasers is always ≥ 1 , also for a monochromatic 4-let time reversal parity is +1

Generalized Bethe-Salpeter Equation – Continuity Equation Current Density Equation – Fick's Law

The intensity correlation, the disorder averaged particle-hole Green's $\Phi^{\omega}_{\vec{a}\vec{a}'}(\hat{Q},\Omega)$ is described by the Bethe-Salpeter equation

$$\Phi_{\vec{q}\vec{q'}} = G_{q_+}^R(\omega_+)G_{q_-}^A(\omega_-) \times \left[\delta(\vec{q}-\vec{q'}) + \left|\frac{\mathrm{d}^3q''}{(2\pi)^3}\gamma_{q\,q''}\Phi_{\vec{q}''\vec{q'}}\right]\right].$$

Continuity equation and current relaxation equation relate the correlator J_E to the gradient of the density correlator P_E .

$$P^{\omega}_{\scriptscriptstyle
m E}(\,ec{Q},\Omega)\,=\,\left[\!rac{\omega}{c_{\scriptscriptstyle
m p}}\!
ight]^{2}\Phi_{
ho
ho}\qquad\qquad \Phi_{j
ho}\,=\,\left[\!rac{c_{\scriptscriptstyle
m p}}{\omega v_{\scriptscriptstyle
m E}}\!
ight]J^{\omega}_{\scriptscriptstyle
m E}(\!ec{Q},\Omega)\,.$$

Conservation Laws: Ward-Takahashi Identity For Open Me Onsager Scenario

$$\Sigma_{\vec{q}_{+}}^{\omega_{+}} - \Sigma_{\vec{q}_{-}}^{\omega_{-}*} - \left| \frac{\mathrm{d}^{3}q'}{(2\pi)^{3}} \left[G_{\vec{q}_{+}'}^{\omega_{+}} - G_{\vec{q}_{-}'}^{\omega_{-}*} \right] \gamma_{\vec{q}'\vec{q}}^{\omega}(\vec{Q},\Omega) \right. \\ = f_{\omega}(\Omega) \left[\operatorname{Re}\Sigma_{\vec{q}}^{\omega} + \left| \frac{\mathrm{d}^{3}q'}{(2\pi)^{3}} \operatorname{Re}G_{\vec{q}'}^{\omega} \gamma_{\vec{q}'\vec{q}}^{\omega}(\vec{Q},\Omega) \right] \right].$$

In presence of loss or gain, effects are enhanced by the prefactor

$$f_{\omega}(\Omega) = \frac{(\omega \Omega \text{Re}\Delta\epsilon + i\omega^2 \text{Im}\Delta\epsilon)}{(\omega^2 \text{Re}\Delta\epsilon + i\omega \Omega \text{Im}\Delta\epsilon)},$$

(4)

which now does not vanish in the limit of $\Omega \to 0$. $\Delta \epsilon = \epsilon_s - \epsilon_b$ is the dielectric contrast.

and	Disentangeling the Cooperon Contribution
	(a) $\frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{k}_{-} \vec{k}'_{-}} = \frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{\gamma}} + \frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{C}} + \frac{\vec{k}_{-} \vec{k}'_{-}}{\vec{k}_{-} \vec{k}'_{-}} + \frac{\vec{k}_{-} \vec{k}'_{-}} + \frac{\vec{k}'_{-} \vec{k}'_{-}} + \frac$
	$+ \underbrace{\vec{k}_{+}}_{\vec{k}_{-}} \underbrace{\vec{k}'_{+}}_{\vec{k}_{-}} \underbrace{\vec{k}_{+}}_{\vec{k}_{-}} \underbrace{\vec{k}_{+}}_{\vec{k}_{-}} \underbrace{\vec{k}_{-}}_{\vec{k}_{-}} \underbrace{\vec{k}_{-}} \underbrace{\vec{k}$
x matter,	(b) $\frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{k}_{-} \vec{k}'} = \frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{k}_{-} \vec{k}'} + \frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{k}_{-} \vec{k}'} + \frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{k}_{-} \vec{k}'} + \frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{k}_{-} \vec{k}'_{+}} + \frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{k}_{+} \vec{k}'_{+}} + \frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{k}'_{+} \vec{k}'_{+}} + \frac{\vec{k}_{+} \vec{k}'_{+}}{\vec{k}'_{+}} + \frac{\vec{k}_{+} \vec{k}'_{+}} + \frac{\vec{k}_{+} \vec{k}'_{+}} + \frac{\vec{k}_{+} \vec{k}'_{+}} + \frac{\vec{k}'_{+} k$
evel laser; n and	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
function,	k̄_k̄_k̄_k̄_Weighted Essentially Non-Oszillatory Solvers Self-Consistency for Diffusion E
(1) current	
(2) edia -	• adaptive stencils in the sense of adaptive meshes, clust
(3)	• capable for non-linearities and roughes, steep gradi Galerkin methods)

- Lax-equivalence theorem: convex combination of all candidates of lower- order difference quotients of the stencil with an attributive weight $g_i = \frac{1}{h+D^2}$; D_i are the smoothness indicators of the stencil. The variable h > 0 is the machine accuracy prohibiting a division by 0.
- [1] R. Frank, A. Lubatsch, Phys. Rev. Research **2**, 013324 (2020).
- [2] D. Vollhardt and P. Wölfle, Phys. Rev. B **22**, 4666 (1980).
- [3] P. D. Lax and R. D. Richtmyer, Commun. Pure Appl. Math. 9, 267 (1956).

for Complex Media

(WENO) – Numerical Equations

ter methods ients (compare discontinuous)

peaked at $2r_{scat} = 245.0 nm$.

- [4] A. Lubatsch, J. Kroha, K. Busch, Phys. Rev. B.**71**, 184201 (2005) R. Frank, A. Lubatsch, J. Kroha, Phys. Rev. B 73, 245107 (2006).
- [5] B. A. van Tiggelen, A. Lagendijk, and A. Tip, Phys. Rev. Lett. **71**, 1284 (1993). B. A. Van Tiggelen, Diffuse Waves in Complex Media, 1-60 (1999). B. A. van Tiggelen, S. E. Skipetrov Phys. Rev. B **103**, 174204 (2021).
- [6] T. Sperling, W. Bührer, C. M. Aegerter, and G. Maret, Nat. Photon. 7, 48 (2013). F. Scheffold and D. Wiersma, Nat. Photon. 7, 934 (2013). G. Maret, T. Sperling, W. Bührer, A. Lubatsch, R. Frank, and C. M. Aegerter, Nat. Photon. 7, 934 (2013).

Selfconsistent Diffusion and Anderson Localization

Single Particle Characteristics: Scattering mean free path $l_s = \frac{1}{2 \text{Im}(\sqrt{q^2 + i \text{Im}\Sigma(\omega)})}$ for disordered samples of TiO₂ Mie spheres, n = 2.7, with a Gaussian distribution of scatterers

The mean square width $\sigma^2(t) = \frac{\int r^2 P_E(r,t) d^2 r}{\int P_E(r,t) d^2 r}$ is a measure of Anderson localized photons.