Spintronika teraz i tu

Tomasz Dietl

Instytut Fizyki PAN Instytut Fizyki Teoretycznej UW

współpraca:

Maciej Sawicki et al.; Jacek Majewski et al. – Warszawa Alberta Bonanni et al. – Linz Hideo Ohno et al. – Sendai Dieter Weiss et al. – Regensburg Shinji Kuroda et al. – Tsukuba Joel Cibert et al. – Grenoble Bryan Gallagher et al. – Nottingham Laurens Molenkamp et al. – Wuerzburg

projekty: FunDMS – ERC Advanced Grant sieć KE: SemiSpinNet Maria Curie action Fundacja Humboldta

Jan Gaj (1943-2011)

GIANT EXCITON FARADAY ROTATION IN Cd_{1-x}Mn_xTe MIXED CRYSTALS J.A. Gaj

Institute of Experimental Physics, Warsaw University, Warsaw, Poland

and

R.R. Gatązka

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

and

M. Nawrocki

Institute of Experimental Physics, Warsaw University, Warsaw, Poland

(Received 21 June 1977 by M. Balkanski)

PHYSICAL REVIEW B 83, 094421 (2011)

Effects of *s*, *p*-*d* and *s*-*p* exchange interactions probed by exciton magnetospectroscopy in (Ga,Mn)N

J. Suffczyński,¹ A. Grois,² W. Pacuski,¹ A. Golnik,¹ J. A. Gaj,^{1,*} A. Navarro-Quezada,² B. Faina,² T. Devillers,² and A. Bonanni²

¹Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, PL-00-681 Warszawa, Poland ²Institut für Halbleiter- und Festkörperphysik, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria (Received 22 November 2010; published 23 March 2011)

Jan Gaj

Instytut Fizyki Doświadczalnej Uniwersytet Warszawski Warszawa

Półprzewodniki półmagnetyczne – przygoda mojego życia (naukowego)*

Semimagnetic semiconductors - the adventure of my (scientific) life

*Referat wygłoszony na XXXII Zjeździe Fizyków Polskich w Krakowie we wrześniu 1993 r.

Postępy Fizyki 45, 125 (1994)

Marian Smoluchowski (1872-1917)

Przemiana metal-izolator Andersona-Motta

modyfikacja równania dyfuzji Smoluchowskiego przez kwantowe interferencje:

- -- fal rozproszonych
- -- amplitud oddziaływania między elektronami

Spintronika

Elektronika = manipulowanie ładukami i prądami

Spintronika = manipulowanie namagnesowaniem i prądami spinowymi manipulowanie pojedynczymi spinami (informatyka kwantowa) Spintronika teraz i tu

kto panuje nad materiałami, panuje nad technologią

Tadahiro Sekimoto, prezes Nippon Electric Corporation

 Tlenki: HfO₂ MgO

 Półprzewodniki półmagnetyczne jednorodne nanokompozyty

spintronika

Technologie informacyjno-komunikacyjne

informacja dostępna w każdym miejscu i o każdym czasie

informacja w pełni zdigitalizowana

banki danych szafy twardych dysków

Rewolucja informatyczna 🗲 rewolucje polityczne

1987 r.

1989 r.

PC/AT 8 MHz; 16 MB RAM; 20 MB HDD 50 milionów PCtów w USA 50 MHz, <1 μ m, 10⁶ tranzystorów

Tu

.... rosnące opóźnienie technologiczne....

Rewolucja informatyczna → rewolucje polityczne

2011 r.

centrum danych Facebooka w Oregonie

Rewolucja informatyczna

synergia nowych aplikacji z wykładniczym wzrostem efektywności

> przetwarzania przesyłania wytwarzania przechowywania

informacji

prawo Moora (Intel)

Nanostrukturyzacja

Liczba tranzystorów w kości

Nanostrukturyzacja

cena jednego tranzystora mniejsza od ceny druku jednej litery w książce

Nanostrukturyzacja

rozwój dzięki postępowi w litografii foto- → electro- → głeboki uv

Wkład litografii/nowych materiałów do wydajności

Source – INTEL, IBM

Wkład nowych materiałów do wydajności

Nowe materiały w technologii "krzemowej"

Prawo Moore'a dzięki nowym materiałom SiO₂ i Si powinny (i sa) zastępowane

Tranzystor MOSFET

ok. 50% mocy – ciepło Joula prądu tunelowego przez bramkę

Zużycie mocy

tunelowanie kwantowe

$SiO_2 \rightarrow HfO_2$

ok. 50% mocy – ciepło Joula prądu tunelowego przez bramkę

stała dielektryczna κ = 3.9

fizyka

- stała dielektryczna κ > 10
- taka sama pojemność
- 10⁴ mniejszy prąd tunelowania

Rzeczywista prędkość

potrzebna zmiana architektury i zasad działania

More of Moore challenges: Disruption of Transistor Nanotechnology

Source: Intel

Future options subject to change

Spintronika

Gigantyczny magnetoopór (GMR)

Struktury GMR do odczytu dysków twardych

GMR read sensor

przełączanie namagnesowania polem magnetycznym

 $(R_{\uparrow\downarrow} - R_{\uparrow\uparrow})/R_{\uparrow\uparrow} = 20\%$

Teoria ab initio (LSDA) prądu tunelowego

W. H. Butler et al. (Oak Ridge) PRB'2001
Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches
J. Mathon and A. Umerski (London) PRB'2001
Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction

$$(R_{\uparrow\downarrow} - R_{\uparrow\uparrow})/R_{\uparrow\uparrow} \cong 1200\% >> 2P_{\rm Fe}^2/(1 - P_{\rm Fe}^2)$$

fizyka: masa nośników ze spinem mniejszościowym b. duża w MgO

Wyniki doświadczalne

Magnetoopór tunelowy

TMR – czujnik pola magnetycznego (jak GMR)

- komórka pamięci
- przełącznik ($R_{\uparrow\downarrow} \cong 7R_{\uparrow\uparrow}$)

Przełączanie namagnesowania prądem

fizyka: ds/dt wytwarza moment siły, który obraca namagnesowanie

J. Slonczewski, JMMM'96, L. Berger, PRB'96

Universalna pamięć – STT MRAM

- skalowalna
- trwała (> 10 lat)
- niezawodna
- szybka (ns)
- odporna na promieniowanie

Oczekiwania związane ze spintroniką

Magnetic tunnel junction based memory elements to counter dynamic and static power, and interconnection delay

Ohno et al. IEDM 2010

Logika z rozproszoną pamięcią

S. Matsunaga et al. (Tohoku) APEX'08

Półprzewodniki ferromagnetyczne materiały wielofunkcyjne

Półprzewodniki półmagnetyczne

standardowe półprzewodniki, np. GaAs, z domieszkami magnetycznymi np. Mn

Domieszkowanie na typ p → ferromagnetyzm

T. Story et al. [Warsawa] PRL'86, H. Ohno et al. [IBM, Tohoku] PRL'02, APL'06, TD , Y. Merle d'Aubine [Grenoble, Warsaw] PRB'97, PRL'97

dziury w paśmie walencyjnym przenoszą sprzężenie ferro w półprzewodnikach półmagnetycznych

żródło dziur w różnych półprzewodnikach z Mn: (II,Mn)VI: akceptory, np., N (III,Mn)V : Mn

(Ga,Mn)As – modelowy ferromagnetyk $T_{\rm C}$ do ~ 190 K

manipulowanie namagnesowaniem: domieszkowanie, naprężenia, światło, pole elektryczne,

Kontrolowanie uporządkowania magnetycznego polem elektrycznym (ferro-FET) (In,Mn)As

H. Ohno et al. [Tohoku, Warsaw] Nature '00

Kontrolowanie kierunku namagnesowania

przełączanie namagnesowania napięciem → małą mocą

D. Chiba et al. [Tohoku, Warsaw] Nature'09

Oś łatwa [-110]

M. Sawicki et al. (Tohoku, Warsaw) Nature Phys. '10

Spinowa przemiana reorientacyjna

M. Sawicki et al. [Tohoku, Warsaw] Nature Phys. '10

Anizotropia płaszczyznowa – teoria

depopulacja podpasm pasma walencyjnego o róznym kierunku L L wpływa na s (spin orbita)

Transfer do metalicznych ferromagnetyków

Anizotropia magnetyczna w Au/Co/Ag

Efekt polowy w Fe w 300 K

T. Maruyama et al. [Osaka, Tohoku] Nature Nanotechn.'09

Zastąpienie litografii przez samoorganizaję

top-down → bottom up

nanokompozyty o kontrolowanej budowie z dokładnością atomową

Samorosnące kropki kwantowe w stopach półprzewodnikowych

InAs w GaAs

Springholz et al. (Linz) Science'98

chemiczna separacja faz kontrolowana przez naprężenia

PbSe w (Pb,Eu)Te

Energia agregacji kationów magnetycznych w GaN

Do synchrotronu

(Ga,Fe)N - XPEEN

I. Kowalik et al. [Warsaw, Linz, Trieste]

Dyfrakcja rentgenowska (Ga,Fe)N

A. Bonanni ,...,[Linz, Warsaw] PRB'07, PRL'08 A. Navaro-Quezada ,..., ,...,[Linz, Warsaw] PRB'2010

Kontrolowanie agregacji przez ko-domieszkowanie

orbitale d w przerwie energetycznej

zmiana wartościowości → wpływ na agregację

T. D. Nature Mat.'06

S. Kuroda et al. [Tsukuba, Warsaw] Nature Mat.'07 (Zn,Cr)Te:N,I

Kontrolowanie agregacji przez ko-domieszkowanie

orbitale d w przerwie energetycznej

zmiana wartościowości → wpływ na agregację

T. D. Nature Mat.'06

(Ga,Fe)N:Mg

A. Navaro-Quezada et al. [Linz, Warsaw] arXiv'11

Wpływ ko-domieszkowania Mg typu δ

A. Navaro-Quezada et al. [Linz, Warsaw] arXiv'11

Kontrolowanie agreacji przez ko-domieszkowanie

A. Navaro-Quezada et al., [Linz, Warsaw] arXiv'11

Separacja faz w półprzewodnikach półmagnetycznych

(Ga,Mn)N

Shuto et al. (Tokyo) APL'07

(Ga,Fe)N

Bonanni (Linz/Warsaw) PRB'07

Guo et al. (Arizona) JMMM'06

(Ge,Mn)

AHE enhanced Jamet et al. (Grenoble) Nature Mat. '06

Nanomagnesy w postaci kropek lub kolumn

Sepracja faz z symulacji Monte Carlo

agregacja kationów magnetycznych

wzrost kolumnowy

K. Sato et al. (Osaka) JJAP'05,pps'07

Metallic nanocolumns in semiconductors possible electronic devices: array of SETs

T. Fukushima et al. [Osaka] phys.stat.sol.(c)'06

to be demonstrated...

Self-organised nanomagnets in semiconductors

media for:

Parkin et al. (IBM) SPINTECH'05

magnetooptical devices?

metallization? ?

Uwagi podsumowujące

elektronika

czy spintronika?

Podsumowanie

```
1965 - 2005 r.
postęp dzięki litografii
```

2005 - ?? postęp dzięki nowym materiałom i litografii

```
??
litografia → uporządkowane nanokompozyty ??
```

