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We show that an exponent of a powerlike time domain growth is determined not only by the conservation or
nonconservation of the order parameter, but also by the asymmetry of single-particle jumps. Domains that have
an anisotropic pattern, such as �2�1�, have a tendency to grow faster in a certain direction than they do in
others. The rate of expansion in different directions depends on the barriers for single-particle jumps. As a
result, dynamical behavior of systems which start in the same configurations and eventually reach the same
equilibrium states is completely different. We show how differences in microscopic dynamics in a one-
dimensional Potts model lead to different rates of domain growth. We observe a similar effect for a two-
dimensional �2�1� ordering by changing the way in which a barrier for a jump depends on the number of
neighboring particles. We show examples of the domain power growth, which are characterized by different
exponents.
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I. INTRODUCTION

An assembly of interacting adsorbed adatoms on a crys-
talline solid surface undergoes a variety of phase transforma-
tions, the nature of which depends on the type of adatom-
adatom interactions and the symmetry of the lattice of
adsorption sites.1–3 Many of these transformations result in
complex adatom density patterns associated with different
regions of the phase diagram for the system.1 When a gas of
adatoms is rapidly quenched below the line of the first-order
phase transition, we observe an initial formation of small
domains—droplets of the emerging new phase—already ex-
hibiting the corresponding geometrical pattern. The growth
of these domains is one of the most intensively studied prob-
lems in surface physics because it exhibits universal charac-
ter that is characterized by only a few system parameters.
Among them a crucial role is played by the relevant order
parameter for the underlying phase transformation. The do-
main growth exhibits t1/2 dependence for a nonconserved
order parameter,4–8 and a t1/3 dependence, called the Lifshitz-
Slozov growth,7–11 for a conserved one. Experimentally, it is
found that slightly different systems either follow a t1/2

growth law12 or an almost diffusion-driven t1/3 growth.9,13–16

On the other hand, for an open system in which particles can
freely desorb and adsorb, the density is clearly nonconserved
and the exponent is always 1/2.7

It has been argued that the degeneracy of the order param-
eter, in a sense attributed to the Potts model,17 has no influ-
ence on the growth time dependence.5 For this reason, analy-

sis of the domain growth is usually made using a proper
version of the Ising model with Glauber dynamics for a non-
conserved order parameter or Kawasaki dynamics for a con-
served one.8,9 For various complex experimental situations,
like O/W�110�,18,19 when domains exhibit �2�1� ordering
structures, the usual “single site” density is not an appropri-
ate order parameter and it is not clear if the inherent order
parameter is conserved or not. In spite of an obvious impor-
tance of the above-mentioned issues for applications ranging
from surface physics to metallurgy, theoretical attempts to
provide an answer to the dynamical exponent puzzle are not
numerous. Attempts to resolve this issue by the computer
Monte Carlo simulation turned out to be inconclusive, the
reason of that was attributed to finite sample size effects, to
long lifetime of transients in ordered system, or to other
computational difficulties. An important step toward solving
the problem was made by Weinberg and co-workers,20–22

who used a new version of the kinetic lattice gas model to
describe migration of adatoms on a two-dimensional crystal-
line lattice. In their model, the migration proceeded by ther-
mally activated adatom jumps via a series of states, which
were also thermally activated. That model resulted in a dif-
ferent rate of transition from one adatom equilibrium loca-
tion to another from the conventional value.20,21 Thermally
activated states have been identified with the physisorbed
adatom states of relatively higher energies. The existence of
the physisorbed states was essential because it allowed for
long adatom jumps resulting in a complete change of the
system kinetics. Particle dynamics via such states results in
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different than usual rates of the domain growth. In most
cases, however, if a physisorbed state truly exists, then a
transition to it leads to desorption rather than to surface mi-
gration. One obtains a similar domain growth effect with an
unphysical choice of locally scaled jump rate, which results
in a change of time scale for each particle jump
individually.22 No explanation was provided as to why we
observe differences in domain growth rates in cases where
thermally activated particles jump between neighboring sites,
with jump rates depending on the energy barriers only.

In order to resolve the domain growth puzzle, we suggest
in the present paper a different approach to the domain
growth analysis based on the modification and generalization
of our studies on surface diffusion.23–26 In these publications,
we have shown that in the case of a closed system �con-
served density�, the diffusion coefficient has a general depen-
dence on microscopic details of the adatoms dynamics, for
example, on modifications to the single-particle jump barri-
ers due to interactions between adatoms. It is precisely that
which makes our kinetic lattice gas model essentially differ-
ent from that introduced in Refs. 20 and 21. In our model
there is no place for thermally activated states, instead the
intersite energy barrier heights are cooperatively modified by
the adatoms’ mutual interactions.23,24 Our approach was mo-
tivated by ab initio calculations for the O/W�110�
cluster.24,25 It has also been shown that the presence of In
adlayer lowers the energy barrier by 0.7–0.12 eV for diffu-
sion of nitrogen on GaN �0001� surface.27 This result indi-
cates that the interaction between adatoms may change the
potential-energy landscape drastically, changing the behavior
of the adsorbed species qualitatively from virtually immobile
to effectively diffusing ones.

The role of interparticle interactions for a particle at the
top of a barrier should be decided experimentally. Their pres-
ence was crucial in understanding diffusion in the
CO/Ru�001� system28 and for rapid rearrangements in the
devil staircase Pb/Si structure.29 In what follows, we will
show that basically the same idea of the barrier modification
due to adatom interactions is sufficient to account for the rich
variety of scenarios for the domain growth dynamics without
the necessity of any further assumptions.

Our next goal is to explain the �2�1� domain growth as
seen, for example, in the O/W�110� system using the dy-
namic Potts model. A simple lattice gas can be mapped onto
the Ising model in a natural way by identifying the presence
of a particle with one Ising state and its absence with the
other. On the other hand, for ordered states of lattice gases,
such as the �2�1� structure, we have four different patterns
of particles which can be mapped onto four different Potts
states. Here, one Potts spin represents a basic �4�4� cell of
the ordered system. This basic cell includes 16 lattice sites,
half of them occupied in the ideal ordering. If we assume
that each cell is ordered, we can map them onto the four-state
Potts17 model on a two-dimensional lattice. It has been
shown5 that the number of Potts states has no bearing on the
rate of domain growth. In Sec. II we present a four-state
Potts model in which the mean domain size increases as a
power function of time with different exponents. Such dy-
namics can be realized by a Potts model with four and more

states, when some domain walls are immobile. Section III
presents different scenarios of �2�1� domain growth.

II. POTTS MODEL

First, consider a one-dimensional Potts model with p=4
states labeled A, B, C, and D. We shall study the dynamics
and growth of domains envisaged as a row of spins found in
the same state, i.e., AAAAA. . ., or BBB. . .. Let us start with
the case when domain walls between all Potts states have the
same dynamics and the order parameter �number of particles
in given state, i.e., A particles� is not conserved. Each par-
ticle can change its state at any time, but the probability of a
given change depends on the state of its nearest neighbors.
Let us define them as follows:

AABB → ABBB or AABB → AAAB , �1�

with the transition probability q=1/2 for each. The same
rule applies to other permutations of the four Potts states.
Jumps of type �1� describe the motion of domain walls be-
tween domains containing at least two atoms. Single-atom
domains disappear, however, following the rules:

ABA → AAA with probability v = 1,

ACB → AAB with probability q = 0.5,

or ACB → ABB with probability q = 0.5, �2�

and the same for similar domains formed by other Potts
states. All other jumps are assigned zero probability. Accord-
ing to rules �1� and �2�, domain walls diffuse freely until they
reach another wall. The order parameter, understood as the
total number of cells in a given Potts state, is not conserved
in such a process because with each jump one state changes
into another one. Diffusive motion of the domain walls de-
termines the character of the domain growth. In a one-
dimensional system, the number of the domain walls is equal
to the number of domains. For a four-state Potts model, there
are two possible ways of changing the number of domains
and/or domain walls. A single-cell domain disappears when
�i� two domain walls are replaced by one—this is the case
when two domains next to the one which disappears are of a
different type �cf. second and third lines in Eq. �2��—or �ii�
no new wall is created and the two domains neighboring the
one which disappears are of the same type �cf. first line of
Eq. �2��. The latter possibility is the only one possible for a
two-state Ising model. The rate of both of these allowed
processes is related to the wall diffusion coefficient. The rate
with which domain walls disappear is equal to the domain
wall diffusion constant D divided by the mean-square dis-
tance between the walls �d2���L /N�2. Here L is the size of
the system and N is the number of domains. The total rate of
decrease of the number of domains is proportional also to
their number N, thus

dN

dt
� ND�N

L
	2

. �3�

As a result N� t−1/2, which means that the average domain
size grows as �d�� t1/2. Growth of the domain is thus univer-
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sal and similar to that in other growth processes where the
domain-wall diffusion is the main growth mechanism. The
internal structure of the p Potts states plays no role in this
type of domain growth.

For practically identical physical systems, however, the
growth law becomes different when the rules for the micro-
scopic atomic jumps are different. To see this, consider the
same Potts model but now with the Kawasaki
dynamics5—appropriate for a conserved order parameter. In
that case of dynamics, the atomic jump results in the ex-
change of two neighboring spins

AAB → ABA with probability v = 0.1,

ACB → ABC with probability q = 0.5,

or ACB → CAB with probability q = 0.5. �4�

The rule now is that neighboring spins exchange their states,
but the total number of spins in the same state is preserved.
The probability of this exchange is smaller when the other
neighbor of the changing spin is in the same state. The rate
of decrease of N, different from Eq. �3�, is

dN

dt
� − NDa�N

L
	3

. �5�

This rate is again proportional to the number of domains N,
to the rate at which particles travel a distance from one do-
main to the other �DN2 /L2, and to the inverse of a mean
number of particles in one domain L / �aN�, where a is the
distance between underlying lattice sites. This last factor re-
flects the fact that in order to annihilate a domain wall it is
not sufficient that just one atom crosses from one domain to
the other. Instead, for two domains to merge in this type of
dynamics, it is necessary that all atoms which constitute one
of the domains move to the other domain of the same type.
For this reason, the rate of wall number decay is much lower
than for the Glauber dynamics, so it has to be divided by the
mean number of particles in the domain. Such a simple pic-
ture is sufficient to account for the difference in the domain
growth laws for nonconserved �3� and conserved �5� order
parameters. For the latter, we get N� t−1/3.

When domains are built up between locally ordered par-
ticle assemblies, like �2�1�, which is the situation charac-
teristic in systems where repulsive interactions are prevalent,
the first type of domain dynamics with nonconserved order
parameter seems to be more appropriate. At the same time,
we observe in this case a wide variety of different exponents
characterizing the domain growth. We will now show how
that variety of exponents different from 1/2 follows from our
model when applied to the systems with a nonconserved or-
der parameter and more than two.

Let us assume that p=4, and let us define the microscopic
dynamics in such a way that all following walls A 
B, B 
C,
C 
D, and D 
A move by diffusion jumps with a probability
q1=1/2, as before, but that the walls A 
C and B 
D do not
move at all, i.e., q2=0. Two walls of the first type, say, A 
B
and B 
C, create one immobile wall A 
C when they meet
each other. This wall, once created, will not be removed until

another mobile wall, D 
A or C 
D, diffuses to its position.
Therefore, the global domain dynamics consists of diffusion
of mobile walls, leading to the creation of immobile walls
which wait for another mobile wall to arrive to convert it into
a mobile wall again. As a result, according to the Monte
Carlo �MC� simulations, the domain size grows like t0.37 �see
Fig. 1�. The dynamics slower than t1/2 is, in this case, caused
by correlations between mobile and immobile walls. An in-
teresting fact is that even if the domain size grows with a
coefficient smaller than 1/2, the number of mobile walls still
decays like t−1/2. It is only the total number of the domain
walls that decays like t−0.37. A new immobile wall is created
in a place where all other walls have already been removed,
so the immobile and mobile walls are strongly anticorrelated.

Such anticorrelation is possible when the Potts spins have
at least four states and dynamics is defined in such a way that
the immobile walls are created and destroyed all the time
during growth process. Indeed, in the example above we
made immobile two types of walls out of the total of six, and
there is always a natural path to creating or destroying any of
them. In a three-state Potts model, there are only three types
of domain walls and if one of them is immobile, then it can
be easily destroyed, but there is no natural way of creating a
new one. This explains the need for at least four Potts states.

III. SURFACE 2Ã1 DOMAINS

The Potts model example above shows that when we have
several different types of domains with the walls between
them moving at different rates, the global domain size
growth can eventually be characterized by exponents other
than 1/2 even if the order parameter is not conserved. Its
value depends on the details of the microscopic dynamics.

FIG. 1. Time dependence of the mean domain width, in units of
lattice constant a, for one-dimensional systems of Potts spins that
evolve according to the classical schema �squares�—all walls move,
or the modified one �triangles�—with two types of walls blocked.
Slopes of the plotted lines are 0.5 for the classical dynamics and
0.37 for the modified dynamics. Simulations were made for 3000
spins and 20 000 MC steps. Periodic boundary conditions were
used. Results were averaged over 100 samples.
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Let us now discuss a two-dimensional system of particles
which interact by attractive nearest-neighbor interactions,
J1 / �kBT�=−1, and repulsive next-nearest-neighbor interac-
tions, J2 / �kBT�=1.25 Such system orders forming the well-
known �2�1� structure.18,19 There are four different domain
types within this structure. Microscopic dynamics of par-
ticles depends, in general, not only on the energies of their
initial equilibrium states but also on the height of potential
barriers between the initial and final states. In the standard
version of the dynamics, all barriers are chosen to be of the
same height and the particles move much faster along than
across the ordered lines of the �2�1� domain structure.25

However, even in this case, the movement of walls between
the ordered structures is more complicated than assumed in
standard models, so that more detailed analysis is needed to
understand the details of the wall motion.

We can change the relative speed of motion of different
walls by modifying the rates of individual particle jumps.
The individual particle jump rate from state i to state j has to
fulfill a detailed balance condition so that the formula for the
rate can be written as

W�i → j� = W0e�Eie−�EB
ij , �6�

where �=1/kBT and W0, providing an intrinsic time scale, is
the jump rate of an isolated particle. The factor e�Ei is stan-
dard, with

Ei = J1�
nn

nk + J2�
nnn

nk �7�

equal to the energy of the particle at site i. Here nn and nnn
denote, respectively, summations over the nearest and the
next-nearest-neighbors k of site i, and nk is the occupation
number �0 or 1� of a neighboring site of this type. The factor

e−�Eij
B

in Eq. �6� depends on the interaction on the barrier.
Here, Eij

B =Eji
B is the system energy modification due to inter-

actions when the hopping particle is at a saddle point be-
tween the sites i and j. The interparticle interaction depen-
dence of Eij

B results in a possibility of different dynamics in
systems with the same equilibrium properties,23,24,26 since
the equilibrium properties of the system are determined by
Ei’s only. For our system, we set

EB
ij = J� �

k�ij�

nk, �8�

where k�ij� represents the sum over all sites neighboring the
saddle point between the sites i and j, and J� is the interac-
tion of the hopping particle at the saddle point with its near-
est neighbor.

As we have already mentioned, in the most often used
models with J�=0, any additional particle moves very fast
along the rows, whereas its motion across the rows is much
slower. A jump across the row consists of two consecutive
jumps: a particle jumps out of an ordered row and creates a
hole, which is subsequently filled by the added particle. The

ratio of particle jump rates along and across the row is, for
J�=0,

r = e3�J2, �9�

and increases with decreasing temperature. In Eq. �9�, 3J2 is
the energy difference between the energy of a particle resid-
ing momentarily between the rows and that for the particle
within the row. For J��0, the saddle point energy difference
has to be added in the exponent, resulting in

r = e��3J2−2J��. �10�

It follows that the dynamics of domain walls depends on
the details of the “single particle” microscopic dynamics,
with the possibility of obtaining domain growth of different

FIG. 2. Examples of the domain pattern resulting from �2�1�
ordering. The upper panel shows a system with dynamics I, after
2 000 000 MC steps, and the lower panel is for dynamics II after
1 600 000 MC steps. The mean size of domains in both cases is the
same �S��92 units. Each unit has 16 lattice sites. The size of the
system is 480�480 lattice sites.
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characters. We have used our standard MC simulation setup
to analyze a system with coverage 1/2. At this coverage, the
system orders at kBTc=0.48J.23 We study the domain order-
ing at several temperatures below Tc for two system sizes:
480�480 and 800�800. The evolution time was 2 000 000
MC steps. The initial state was a random configuration of
particles corresponding to the state of the system at a very
high temperature. The system evolves according to MC rules
defined by the transition rates �6�. We identify domains by
comparing 4�4 fragments of the lattice with ordered pat-
terns of four possible domains. Therefore, 16 lattice sites
form one basic domain unit. Its length we denote by a0.
Domain sizes are then measured in such units. We assume
the error level 3, meaning that we identify part of the system
as a particular domain only when it disagrees with a sample
pattern at no more than three points. In Fig. 2 we show how
the domains look like when such analysis has been done
after some time, for two different versions of dynamics:
J� / �kBT�=1 �dynamics I� and J� / �kBT�=−1 �dynamics II�.

According to Eq. �10�, these correspond to low and high
anisotropy of particle motion, respectively. The two pictures
in Fig. 2 have been chosen in such a way that the mean
domain size, measured as its mean area, is the same in both
cases. No qualitative differences can be seen between the
two pictures.

The mean domain size, however, behaves differently as a
function of time in both cases. We can see in Fig. 3 that for
J�=1 �low anisotropy� we clearly have the t0.5 growth law
and for J�=−1 �high anisotropy� the growth is according to
t0.35. The domain growth dynamics is different due to differ-
ent interactions of the particle while being at the saddle point
between its initial and final states. The equilibrium properties
of both systems are the same. In the system under study,
there are four basic types of domains and there are more than
six possible domain wall types. Examples of such domain
walls are presented in Fig. 4. Some of them move very
slowly. In fact, they can be considered as almost immobile,
resulting in the slowing down of the net domain growth. The
mechanism that leads to different dynamics in cases I and II
appears then to be identical to that discussed earlier for the
one-dimensional Potts model. The essential feature of this
dynamics is the immobilization of certain types of domain
walls.

It appears that the domain growth dynamics in systems
with more than two states for a nonconserved order param-

FIG. 3. Time dependence of the mean �2�1� domain width at
different temperatures. �S /a2� is the mean domain area expressed as
a number of 4�4 basic unit cells. Upper panel shows results for the
system that evolves according to dynamics I; lower panel is for
dynamics II. Results for kBT=0.45J1 are denoted by squares, for
kBT=0.42J1 by triangles, and for kBT=0.4J1 by circles. At each
temperature, 20 points are shown, separated by 10 0000 MC steps.
The slope of lines in the upper panel is 0.5, and in the lower panel
it is 0.35.

FIG. 4. Examples of domain walls between different �2�1�
domains.
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eter depends on the details of the microscopic dynamics of
particle motion. Such dynamics should result in different
relative speeds of domain-wall motion. We have proposed a
simple model which can be easily analyzed following the
results obtained for a one-dimensional four-state Potts sys-
tem. This system with a nonconserved order parameter re-
sults in the usual t1/2 diffusional domain growth for classical
microscopic dynamics. However, when the symmetry of
states is broken by making two domain walls immobile, we
end up with a completely different net growth dynamics gov-
erned by the t0.37 time dependence. We have shown that simi-
lar growth laws are obtained for more realistic �2�1� do-
mains in a two-dimensional system with attractive and
repulsive interactions. We have shown that differences in
particle interaction, with the rest of the system, when that

particle occupies the top of the barrier, lead to different do-
main growth dynamics. We hypothesize, therefore, that dif-
ferent power-law time dependencies of the domain growth
are observed in many systems12–16,18,19 due to similar rea-
sons. The character of the saddle-point interaction was deter-
mined for some systems by comparison of theoretical models
with experimental data for the diffusion coefficient.28,29 The
rate of net domain growth is another experimental probe that
can help to determine the actual microscopic jump dynamics
in a given system.
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