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Collective diffusion is investigated within the kinetic lattice gas model for systems of particles in one
dimension with repulsive long-range interactions which are known to result in a staircaselike phase diagram
with an infinite sequence of incompressible crystalline phases separated one from another by unstable com-
pressible liquidlike phases. Using a recently proposed �Gortel and Załuska-Kotur, Phys. Rev. B 70, 125431
�2004�� variational method, an analytic expression for the particle density dependence of the diffusion coeffi-
cient is derived in which commonly postulated static and kinetic factors are unambiguously identified. It is
shown that while the static factor exhibits singular coverage dependence due to a sharp drop of compressibility
when the system enters a crystalline phase, the kinetic factor may substantially modify this behavior. Depend-
ing on details of the activated state interactions controlling the migration kinetics the diffusion coefficient may
also be singular or, at another extreme, it may be a continuously smooth function of density. In view of these
observations recent results on efficient low temperature self-reorganization through devil’s staircase phases in
the dense Pb/Si�111�-�3��3 are discussed.
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I. INTRODUCTION

The collective or chemical diffusion of surface species
involves jumps of adsorbed interacting particles from one
binding site to another. The effectiveness of the surface dif-
fusion in relation to that of other surface processes, like ad-
sorption, desorption, chemical reactions, etc., determines the
catalytic activity of the surface.1,2 Growth of nanostructures
from beam deposited clusters is controlled by the cluster sur-
face diffusion enabling them to grow into islands making
surface diffusion a subject of interest in nanostructuring.3

The experimental progress in this field has been recently re-
viewed in Refs. 4–7. Collective diffusion is a complicated
many-body problem which, with a few exceptions,8–11 is
usually studied using a variety of Monte Carlo simulation
methods. Early efforts were summarized in a classical review
by Gomer12 and, more recently, by Danani et al.13 and Ala-
Nissila et al.14

Although diffusion within adsorbates is usually associated
with diffusion in two dimensions, there exist experimentally
studied and technologically important systems of this type
which can adequately be modeled in one dimension. For ex-
ample, static and dynamic properties of atoms confined in
carbon nanotubes15–17 can be investigated using one-
dimensional models; diffusion of Au or Si atoms on top of a
Si�111�5�2-Au chain structure has one-dimensional
character,18,19 etc. Recently, self-organization in truly two-
dimensional systems,20,21 being the primary motivation of
this work, has been shown to have essentially one-
dimensional character.

Interactions between the neighboring atoms modify rates
of atomic jumps leading to the coverage dependent diffusion
coefficient �the coverage � is defined as a ratio of the actual
particle density to its maximum value reached when each

adsorption site is occupied�. The interactions affect the cov-
erage dependence of diffusion also through the structural
transformations within the adsorbate layer which favor dif-
ferent geometrical configurations within the adsorbate at dif-
ferent coverages. It is usually understood that interparticle
interactions influence diffusion in two ways:22 by affecting
the thermodynamic �static� properties of the system and by
modifying the kinetics of motion of particles. For example,
in a case of an adsorbate, the thermodynamic properties are
fully determined by “ground state interactions” between non-
activated particles. These interactions affect also kinetics of
diffusion but, in addition, also interactions between an acti-
vated particle and surrounding it nonactivated ones, i.e., the
“activated state interactions” play an important role in kinet-
ics. A distinct role played by kinetics and thermodynamics in
diffusion is often emphasized by writing the collective diffu-
sion coefficient as a product12,23

D��� = DJ���� ���/kBT�
� ln �

�
T

�1�

of the jump rate diffusion coefficient DJ���, accounting for
the effective jump kinetics in an interacting system, and a
“thermodynamic factor” directly related to the isothermal
compressibility or, equivalently, to the equilibrium mean
square particle number fluctuation. While the thermody-
namic factor can be in principle modeled easily, modeling
the jump rate diffusion coefficient is more difficult. In our
past work24,25 we have avoided postulating the factorization
of the diffusion coefficient choosing, instead, to evaluate the
collective diffusion coefficient as a whole—in “one shot.” In
this way, possibly inconsistent approximation schemes in
evaluating each factor separately are avoided. We follow the
same approach also in this work but, in addition, we explic-
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itly identify in our expressions both the kinetic and the ther-
modynamic factors. This allows one to determine unambigu-
ously which of the two factors is responsible for observed
structures in the D��� dependence, e.g., due to the structural
organization of the adsorbate. It is important in view of pos-
sible cancellations when both factors are multiplied by each
other.

Diffusion on a lattice is particularly well-suited for a “one
shot” approach. A clear separation of time scales between
elementary transition processes �particle jumps between ad-
sorption sites� and the time lapse between successive transi-
tions �the sequence of which leads to the observed diffusion�
allows one to treat one particle jump at a time, consider them
to be statistically independent, and invoke the Markovian
hypothesis that the present state of the system is fully deter-
mined by its state at one past time rather than by its entire
past history. Consequently, the kinetics of the microscopic
states of the system, labeled by �c	’s, is governed by a Mar-
kovian master equation for the probability P��c	 , t� that a
microstate �c	 of the system occurs at time t

d

dt
P��c	,t� = 


�c�	

�W��c	,�c�	�P��c�	,t� − W��c�	,�c	�P��c	,t�� ,

�2�

from which the collective diffusion coefficient can be di-
rectly extracted as shown in Refs. 24 and 25. In Eq. �2�,
W��c	 , �c�	� denotes a transition probability per unit time that
the microstate �c�	 changes into �c	 due to a particle jump of
a particle from an occupied site to an unoccupied neighbor-
ing one. It must be emphasized that modeling kinetics of
diffusion, here, proposing model expressions for the rates
W��c	 , �c�	�, requires going beyond modeling necessary to
investigate the equilibrium properties for which only the
ground state interactions are necessary. The rates must be
compatible with these interactions �through, e.g., detailed
balance conditions� but their specification requires modeling
the activated state interactions. While such interactions were
ignored in early numerical simulations of diffusion, their im-
portance is strongly emphasized in recent simulations of dif-
fusion on generic triangular26,27 and square lattices28 and sys-
tems intended to account for diffusion in the O/W�110�
system.29,30 More recently, these interactions have been
found crucial in accounting for diffusion of H on Pt�111�
surfaces.31

Recent experiments20,21 on adsorbate self-organization in
Pb/Si�111� indicate that by varying adsorbate coverage by as
little as ���0.006 ML the adsorbate reorganizes, without
the need of thermal annealing, from one structural phase to
another one, distinctively different from the former and ex-
tending over macroscopic distances ��0.5 mm�. A succes-
sion of several phases was observed within the interval from
1/5 to 1/3 above monolayer coverage. The interpretation
provided in Refs. 20 and 21 is that this system is an example
of the devil’s staircase system showing a high degree of self-
organization driven by long-range adatom-adatom interac-
tions. Phase diagrams for best known devil’s staircase sys-
tems in one dimension in which every atom interacts with

every other one via distance-dependent forces were theoreti-
cally and numerically investigated in Refs. 32 and 33 and
reviewed in Ref. 34. T=0 plots of coverage � vs chemical
potential � in such systems have a fractal structure and con-
sist of horizontal plateaus at rational values of coverage, �
=m /n, where m�n are integers. At such a coverage the sys-
tem is in a crystalline phase with the elementary cell consist-
ing of n equidistant adsorption sites �with a being the dis-
tance between neighboring sites� occupied by m atoms with
at most two, differing by a, possible values of a distance
between nearest atoms. Width �� of each plateau determines
stability of a particular phase—the most stable one, with the
largest ��, corresponds to �=1/2 for which every second
adsorption site is occupied. The fact that upon infinitesimally
small coverage change the reorganization of the system oc-
curs without annealing faster than it could be observed may
be interpreted as an indication that the collective diffusion
coefficient, as a function of coverage, has sharp maxima at
rational values of �. The maximum values are larger for
more stable phases.

Diffusion in a true devil’s staircase system has not been
theoretically investigated yet and it seems to be a formidable
mathematical task. In this work we limit our attention to a
simpler system in which each atom interacts only with its
first neighbor to its left and right via a distance-dependent
force �a procedure referred to in Ref. 35 as the NN-
approximation�. In particular, it was shown in Ref. 35 that
for long-range repulsive interactions between the neighbors
�satisfying certain conditions, cf. Sec. II B� the interparticle
correlations are capable of producing with increasing pres-
sure a continuous transition from a weakly nonideal gas to
“crystalline” phases with coverages �=1/�, where � is an
integer �the actual particle density is � /a where a is the
lattice constant�. Transitions through the crystalline states
with different � occur via narrow regions of a liquidlike
state. Our goal is to investigate how the collective diffusion
coefficient varies when such a system passes through its dif-
ferent crystalline phases. To differentiate from the true dev-
il’s staircase system and motivated by a shape of its iso-
therms �cf. Fig. 1� we refer to the system resulting from its
NN-approximation as an �ordinary� staircase system. We will
see that although the diffusion coefficient static factor exhib-
its singular coverage dependence due to a sharp drop of the
static compressibility when the system enters a crystalline
phase, the kinetic factor can substantially modify this behav-
ior resulting in D��� being either a singular or continuously
smooth function of � depending on details of the activated
state interactions controlling adatom migration kinetics.

In order to investigate diffusion in a staircase system the
recently developed analytic approach24,25 to diffusion in a
one-dimensional lattice gas system must be generalized. An
extra perhaps minor benefit coming from this generalization
is that all analytic results for all short-range interaction mod-
els considered in Refs. 24 and 25 are quickly recovered in a
more transparent way than in the original papers.

The paper is organized as follows. Theoretical basis is
provided in Sec. II in which we summarize first the theoret-
ical method used �Sec. II A�, summarize thermodynamic
properties of the staircase system �Sec. II B�, unambiguously
identify and investigate the diffusion coefficient static factor
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�Sec. II C�, and derive the expression for the kinetic factor
�Sec. II D�. After testing our approach by reproducing al-
ready known results24,25 �Secs. III A and III B� we concen-
trate in Sec. III C on the staircase system with long-range
interactions for which the diffusion coefficient kinetic factor
is obtained for several models of the migration kinetics cor-
responding to different activated state interactions �Secs.
III C 1–III C 3�. Numerical results are presented and dis-
cussed in Sec. IV and some comments on possible generali-
zations for the true devil’s staircase system are made in Sec.
V. Section VI is devoted to final comments, conclusions, and
summary.

II. THEORY

A. Theoretical method—summary

We summarize here the theoretical method used to extract
the collective diffusion coefficient from the microscopic
Master equation �2�. We consider a one-dimensional lattice
consisting of L adsorption sites which can be occupied by
particles, N in total, with no more than one particle at a given
adsorption site. The lattice constant is a. A microstate �c	 is
identified by a set of N numbers

�c	 = �X;m1,m2, . . . ,mN−1� � �X;�m	� , �3�

where X=na �n=0, ±1, ±2, . . . , ±�� is a position of one of
the particles, referred to as the reference particle, and mi is an
integer indicating the distance, in units of the lattice constant
a, of the ith particle away from the reference particle. The set
�m	= �m1 ,m2 , . . . ,mN−1�—referred to as a configuration—
accounts for the relative arrangement of particles in a given
microstate. With periodic boundary conditions the lattice po-

sitions X and X+La are equivalent: it is convenient to con-
sider all L sites to be arranged along a circumference of a
circle of length La. Two possible directions along the line
will be referred to either as clockwise �from left to right� or
counterclockwise �from right to left�. Choosing the reference
particle to be the leftmost one in the microstate and labeling
the remaining particles with integers i=1,2 , . . . ,N−1 in the
order in which they are encountered going from the reference
particle in the clockwise �right� direction results in the set
�m	 to be ordered as follows:

1 � m1 � m2 � ¯ � mi � ¯ � mN−1 � L − 1. �4�

For example, if N=3 then the microstate
���������¯ is identified as �X ;m1 ,m2�= �2a ;1 ,4�
and the corresponding configuration is �m	= �1,4�.

The transition rates do not depend on the positions of the
reference particle in both configurations involved but only on
the relative position of the hopping particle with respect to
all other particles so W��c	 , �c�	�=W�m	,�m�	. This allows one
to take the lattice Fourier transform of the Master equations
to convert them into the rate equations in k-space

d

dt
P�m	�k,t� = 


�m�	

M�m	,�m�	�k�P�m�	�k,t� , �5�

where P�m	�k , t� is the lattice Fourier transform of
P��X ; �m	� , t� and

M�m	,�m�	�k� = F�m	,�m�	�k�W�m	,�m�	 − ��m	,�m�	 

�m�	

W�m�	,�m	

�6�

are matrix elements of the k-space rate matrix M�k�. The
factor F�m	,�m�	�k� is equal to 1 except when the configuration
�m	 is obtained from �m�	 as a result of a jump of the refer-
ence particle. In such case it is equal to exp�ika� for the
clockwise or exp�−ika� for the counterclockwise jump. The
rate matrix is, in general, non-Hermitian because the hopping
rates between a pair of sites in opposite directions are not
necessarily the same. Consequently, a left eigenvector is not
equal to the Hermitian conjugate of the corresponding right
eigenvector. Instead, a simple relation exists between the
�m	th component of the left eigenvector, ẽ�m	�k�, and the
component, e�m	�k�, of the corresponding right eigenvector

e�m	�k� = P�m	
eq ẽ�m	

* �k� , �7�

as a consequence of the detailed balance condition satisfied
by the rates W�m	,�m�	. Here P�m	

eq is the probability of the
configuration �m	 in equilibrium, i.e., it is the �m	th compo-
nent of the right eigenvector of M�k=0� corresponding to its
vanishing eigenvalue, 	D�k=0�=0. The eigenvalue −	D�k� of
the rate matrix M�k� which vanishes in the limit k→0, re-
ferred to as the diffusive eigenvalue, is of particular interest
because the collective diffusion coefficient can be evaluated
directly from it as follows:

FIG. 1. Isotherms for the system with the NN-pair interaction
given in Eq. �21� for “low” and “high” temperature. The character-
istic pressure values P2, P3, and P4 and the pressure interval �P2

are defined in Eqs. �19� and �20�, respectively. Pressures above
roughly P2+kBT /a correspond to �=1 due to the impossibility of
occupying an adsorption site by more than one particle.
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D��� = lim
k→0

	D�k�
k2 . �8�

For the lattice gas, the limit means ka
1.
If all components ẽ�m	

* �k� of the left diffusive eigenvector
of M�k� and the equilibrium probabilities P�m	 are known
then the diffusive eigenvalue can be evaluated as a ratio

− 	D�k� = M�k�/N�k� �9�

of the “expectation value numerator”

M�k� = 

�m	,�m�	

ẽ�m	�k�M�m	,�m�	�k�P�m�	
eq

ẽ�m�	
* �k�

= 

�m	,�m�	

no rep

P�m�	
eq

W�m	,�m�	

� F�m	,�m�	�k�ẽ�m�	
* �k� − ẽ�m	

* �k�2, �10�

to the “normalization denominator”

N�k� = 

�m	

P�m	
eq ẽ�m	�k�2. �11�

The second result in Eq. �10� is obtained from the first one
after Eq. �6� is used together with the detailed balance con-
dition. The comment “no rep” above the sum means that
each configuration pair �m	 , �m�	 for which W�m	,�m�	�0 ap-
pears in the summation only once—such term accounts for
both transitions, from �m�	 to �m	 and back. The equilibrium
probabilities are normalized:



�m	

P�m	
eq = 1, �12�

and summing over configurations in Eqs. �10�–�12� the or-
dering condition �4� must be obeyed.

Equations �8�–�11� are the theoretical starting point for all
applications. We shall see later that N�k=0� is directly re-
lated to the thermodynamic factor in Eq. �1� while the ka

1 limit of M�k� /k2 is a kinetic factor proportional to the
jump rate diffusion coefficient DJ��� in Eq. �1�. Its evalua-
tion requires specifying a model for the particle jump rates—
they must satisfy the detailed balance condition. In addition,
ẽ�m	�k� and P�m	

eq �k� are needed in both the numerator M�k�
and the denominator N�k�. Generally, they are not known
and plausible “variational” candidates must be proposed. It is
important to note that whatever approximate expressions are
proposed, the choice is the same for both the static and the
kinetic factor. This is not necessarily the case in approaches
in which both factors are modeled independently. One of the
requirements for the diffusive left eigenvector, due to the
overall particle number conservation, is that all its compo-
nents ẽ�m	�k� tend to be the same limit for ka
1 with linear
ka corrections which may be different for different configu-
rations �m	.

Similarly like in all our previous one-dimensional
applications24,25 we propose the following approximation for
ẽ�m	�k�:

ẽ�m	
* �k� � ẽm1,m2,. . .,mN−1

* �k� � 1 + 

j=1

N−1

e−ikamj . �13�

Note that each of the N−1 terms in the sum corresponds to
one of the N−1 particles. The initial “1” may be considered
to be a contribution exp�−ikam0� due to the reference particle
with mj=0=0. This is the simplest possible proposition moti-
vated by the fact that the expression on the right-hand side of
Eq. �13� is exact for the lattice gas in which all the particle
jump rates are the same �and the only restriction is the site
blocking preventing their double occupancy�. The accuracy
of the anzatz given in Eq. �13� was tested with good results
in Ref. 25 against the results of Monte Carlo simulations for
a one-dimensional model with short-range interactions.
Sometimes, like in our recent application to a two-
dimensional lattice gas,36 it is necessary to propose more
sophisticated candidates for ẽ�m	

* �k�.

B. Thermodynamics

For the interacting lattice gas, two particles at the lattice
positions ali and alj contribute the potential energy ��li− lj�
to the total energy of the system. Following Ref. 35 we con-
sider systems with the pair potential energy ���� declining
rapidly with �. This implies that one can neglect the next-
nearest-particle interactions but account for pair interactions
between neighbors no matter how large the intrapair separa-
tion a� is. The devil’s staircase system32,34 would result if
interactions between any two particles were considered. Lim-
iting the interactions to first neighbors only is referred to as
the NN-approximation in Ref. 35. The total interaction en-
ergy in the resulting “staircase” system is 
�n����� where n�

is the number of NN-pairs of length � �in units of a� and only
�’s satisfying the condition 
��n�=L are admitted in the
sum. Such restriction leads to impossibly complicated com-
binatorics which can be avoided by letting � vary from 0 to
� and keeping, instead, the system under fixed external pres-
sure P �in 1D it is just an external force� which is determined
by the condition that the mean NN-pair length ��� is equal to
the inverse of the actual coverage �=N /L. In such case a
probability of a pair of length � is35

p��P,T� = Z1
−1�P,T�e−��̃��,P�, �14�

where

�̃��,P� = ���� + aP� �15�

and

Z1�P,T� = 

�=1

�

e−��̃��,P� �16�

is a single NN-pair isothermal-isobaric partition function.
Equations �14�–�16� allow one to determine the thermo-

dynamic properties of the system. In particular, the equation
of state, relation between coverage, pressure, and tempera-
ture are obtained by evaluating the mean NN-pair length
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��� = Z1
−1�P,T�


�=1

�

�e−��̃��,P� = −
1

�a
� � ln Z1

�P
�

T
, �17�

and identifying it with 1/�. Another physical quantity of in-
terest is the isothermal compressibility KT. Using Eqs.
�14�–�17� one gets

KT � −
1

N���
� ��N����

�P
�

T,N
= �a

��2� − ���2

���
. �18�

There are no formal restrictions on the pair interaction
energy ����. In particular, the standard Ising-like system cor-
responds to ��1�=J and ���2�=0 with repulsive �J�0� or
attractive �J�0� interactions between particles at neighbor-
ing sites.

Particularly interesting is the case in which ���� corre-
sponds to repulsive interaction, is a convex function of �,
and declines faster than 1/�. It is shown in Ref. 35 that in
such case the effect of interparticle correlations is controlled
by the product �=�aP. Namely, for �
1 �low pressure
and/or high temperature� the system is in the low coverage
ideal gas limit with the standard equation of state �=�aP. In
the opposite high pressure and/or low temperature limit, �
�1, the thermodynamic limit depends on whether the func-
tion �̃�� , P� has a minimum or not as a function of the dis-
crete variable �. In the former case, when the pressure is
lower than PC� P2, where

aPq+1 = ��q� − ��q + 1�, q = 1,2, . . . , �19�

the plot of � vs P dependence has a staircaselike shape. It is
characterized by broad plateaus extending roughly over in-
tervals �Pq+1 , Pq� of width

a�Pq � a�Pq − Pq+1� = ��q − 1� − 2��q� + ��q + 1� ,

�20�

in which � does not depend on P and has a value 1/q: the
lattice gas forms an incompressible crystal with a lattice con-
stant aq. When the increasing pressure passes through Pq
then the coverage increases rapidly from the plateau value
1/q to 1 / �q−1� while the system passes through a liquidlike
phase with a finite compressibility over a narrow pressure
interval of width of the order of kBT /a. This behavior can be
easily understood: within the plateau region, for pressures P
such that Pq+1� P� Pq, only one term with �=q, corre-
sponding to the lowest value of �̃�� , P� makes a major con-
tribution to the sums in Eqs. �16� and �17�. Within a narrow
transition region for P� Pq+1 we have �̃�q , P�� �̃�q+1, P�
so two terms, with �=q and q+1, contribute roughly equally.
For pressures higher than PC= P2 the coverage reaches the
maximum value of �=1.

These properties are illustrated in Fig. 1 for the long-
range interaction

���� =
��1�
�2 . �21�

C. The static factor

We are ready to evaluate, within the NN-approximation,
the denominator N�k ;L ,N� given in Eq. �11�. The calcula-
tion proceeds roughly along the lines of a similar calculation
in Appendix F of Ref. 24 leading to Eq. �46� there. In short,
substituting Eq. �13� for ẽ�m	�k� and evaluating ¯ 2 results
in 1’s added together N times �when exp�ikami� is multiplied
by its complex conjugate� and N�N−1� terms like
exp�ika�ms−mj��—with all possible distances between par-
ticles appearing in the exponents. Rearranging the summa-
tion indices and using the normalization condition �12� one
arrives at the analog of Eq. �F2� in Ref. 24

N�k;L,T,N� = N�1 + 

�m	

P�m	
eq 


j=1

�N−1�/2

�eikamj + e−ikamj�� .

�22�

Note that in Eq. �22� the two exponents correspond, respec-
tively, to the distances from the reference particle being
counted for half of the particles in the clockwise direction
and for the remaining half in the counterclockwise direction.
The periodic boundary condition, exp�ikaL�=1, is essential
in rearranging the original sums into the above form.

The sum over �m	 is in Eq. �22� over all possible micro-
scopic configurations so a particular distance amj in one con-
figuration is going to appear also in a different configuration,
possibly corresponding to a different j. Consequently, the
order of summations can be reversed and we get

N�k;L,T,N� = N�1 + 

j=1

�N−1�/2

��eikamj�LTN + �e−ikamj�LTN�� .

�23�

Here,

�eikamj�LTN = 

�m	

P�m	
eq eikamj �24�

is a mean value of exp�ikamj� �for the jth particle counting
clockwise from the reference particle� evaluated by averag-
ing over all configurations of the lattice gas consisting of N
particles distributed among L adsorption sites. Such average
cannot be calculated analytically and is replaced here with
�eikamj�PT, the average over all possible configurations of the
lattice gas of N particles distributed among an undetermined
number of lattice sites subjected to the external pressure P
�we omit N in the subscript anticipating that the mean is an
intensive quantity�. Consequently, we evaluate N�k ; P ,T ,N�
rather than N�k ;L ,T ,N�.

Consider j=1, i.e., we focus attention on the first particle
in the clockwise direction away from the reference particle.
It can either be at a distance a from it, i.e., m1=1, or at a
distance 2a, corresponding to m1=2, or, in general at a dis-
tance a� and then m1=�. In each case the reference particle
forms a NN-pair with the j=1 particle, all remaining NN-
pairs can have an arbitrary length so the situations listed
above occur with probabilities p1�P ,T�, p2�P ,T�, or p��P ,T�,
respectively, defined in Eq. �14�. Note that the probabilities
do not depend on N so
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�eikam1�PT = 

�=1

�

p��P,T�eika� �25�

depends on P �and T� but not, as anticipated, on N.
For j=2 the simplest possible configuration is

�����¯ �the leftmost � denotes the reference particle,
while � denotes a site which can either be empty or occu-
pied by any particle with j�2�. This configuration corre-
sponds to m2=2 and contributes exp�2ika�p1p1 to
�exp�ikam2��PT. Then, for m2=3 we have ������¯, or
������¯ �with � denoting an empty site�. The prob-
abilities are p1p2 and p2p1 so the contribution is exp�3ika�
��p1p2+ p2p1�. For m2=4 there are three possibilities:
������¯, ������¯, or ������¯ and the
contribution is exp�4ika��p1p3+ p2p2+ p3p1�. The pattern
continues and the result is

�eikam2�PT = 

n=2

�



�=1

n−1

eiknap��P,T�pn−��P,T�

= 

�=1

�



��=1

�

eik��+���p��P,T�p���P,T�

= ��eikam1�PT�2. �26�

This result can be easily generalized for any j:

�eikamj�PT = ��eikam1�PT� j . �27�

Using Eq. �26� in Eq. �23� �with �¯�LTN replaced with
�¯�PT� one ends up with a sum of a geometric progression
summed up to j= �N−1� /2. Extending this to � for N�1 we
get

N�k;P,T,N� = N�1 +
�eikam1�PT�1 − �eikam1�PT� + c.c.

1 − �eikam1�PT2 � ,

�28�

which depends on N only through the multiplicative factor.
To get N�k=0; P ,T ,N� it is convenient to expand the ex-

ponential terms in Eq. �25� in a power series of ka. One gets

�eikam1�PT = 

s=0

�
�ka�s

s!
��s� , �29�

where ��s� without subscripts denotes averaging with the
NN-pair length probabilities, like in Eq. �17�. Inserting this
into Eq. �28� it is necessary to keep terms up to s=2. The
result is

N�k = 0;P,T,N� = N
��2� − ���2

���2 = N
KT

�a���

= N�� ���/kBT�
� ln �

�
T
�−1

, �30�

where KT and � are the isothermal compressibility and the
chemical potential, respectively. To get the second result in
Eq. �30�, Eq. �18�, relating the isothermal compressibility to
the mean square NN-pair length fluctuation, was used. These
relations demonstrate that the inverse of the collective diffu-

sion denominator N�k=0� is, up to a factor N, equal to the
thermodynamic factor appearing in Eq. �1�.

It was argued already35 that for pressures within the inter-
val �Pq+1 , Pq�, where q=2,3 , . . . the dominant contribution to
the sums in Eqs. �16�,�18�, etc. is due to the term �=q. In
��2�− ���2, however, the main contribution is due to �=q−1
and q+1 because the �=q contributions cancel out. Using
this information one can find the pressure Pq

xtr within this
interval for which the isothermal compressibility is mini-
mum. The result is Pq

xtr= �Pq+1+ Pq� /2 at which the contribu-
tions due to the �=q−1 and q+1 are exactly equal to each
other. Substituting Pq

xtr back into the approximate expression
for ��2�− ���2 one gets the following expression for the value
of the local maximum of the diffusion coefficient static fac-
tor

� ���2

��2� − ���2�
max

=
q2

2
e�1/2��a�Pq, �31�

where �Pq= Pq− Pq+1, defined in Eq. �20�, is the length of
the pressure interval for which the coverage is equal to 1/q
�at T=0, c.f. Fig. 1�. The factor N is irrelevant and will be
ignored from now on because it is canceled by N present in
the kinetic factor.

A somewhat more detailed analysis shows that for P dif-
fering from Pq

xtr or Pq+1 or Pq by more than 1/�a but still
being between Pq+1 and Pq, which is possible only at low
enough temperatures, the P-dependence of the static factor is
dominated by a single exponential. The approximate low
temperature result is

���2

��2� − ���2 � �e�a�P−Pq+1�; Pq+1 � P � Pq
xtr

e�a�Pq−P�; Pq
xtr � P � Pq.

� �32�

Consequently, for P up to Pq+1 such that �Pq+1− Pq��a�1
the logarithm of a static factor has minima at P2 , P3 , . . . , Pq+1
and maxima halfway between these points and is a linear
function of P between the extrema. This behavior is evident
in Fig. 2 in which we present the pressure dependence of the
static factor �without the irrelevant factor N� for the same
parameters as used in Fig. 1. The coverage dependence is
shown in Fig. 3. Some comments are provided in the figure
captions and we postpone further discussion until the results
for the diffusion coefficient are presented.

D. The kinetic factor

It follows from Eqs. �1�, �8�, �9�, and �30� that the kinetic
factor, i.e., the jump rate diffusion coefficient, is directly re-
lated to the numerator M�k�:

DJ��� = N−1 lim
k→0

�M�k�/k2� . �33�

In this section we will evaluate it from Eq. �10� for the lattice
gas under the external pressure P. It is important to note here
that evaluating the kinetic factor we use in Eq. �10� the same
approximate expression, Eq. �13�, for ẽ�m	�k� as used to cal-
culate the inverse of the static factor from Eq. �11�. Conse-
quently, both factors entering the expression �1� for the dif-
fusion coefficient are evaluated from their defining exact
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expressions using the same set of approximations.
Positions of all but one particle �the one which jumps� are

the same in both configurations �m	 and �m�	 in Eq. �10�
while the position of the hopping particle differs by ±a
between them. If the hopping particle is not the reference
one then F�m	,�m�	�k�=1 and, as seen from Eq. �13�, all but
one term in ẽ�m�	�k� is canceled by a corresponding term in
ẽ�m	�k�. When the hopping particle is the reference particle
then all exponential terms in ẽ�m�	�k� differ from the corre-
sponding exponential terms in ẽ�m	�k� by a factor exp�±ika�
which is canceled by F�m	,�m�	�k�=exp��ika�. Consequently,
the result is the same for any hopping particle,

F�m	,�m�	�k�ẽ�m�	
* �k� − ẽ�m	

* �k�2 = 4 sin2� ka

2
� �34�

and, in the k→0 limit, we get from Eq. �10�

M�k;L,T,N� = �ka�2 

�m	,�m�	

no rep

P�m�	
eq

W�m	,�m�	. �35�

Further progress requires a closer look at the hopping rates.

The sum over configuration pairs �m	, �m�	 in Eq. �35�
may be replaced with the summation in which we fix the
initial configuration �m�	, evaluate and add together all con-
tributions resulting from considering each particle in it, one
at a time, to be the hopping one, repeating the process for all
possible configurations �m�	, and adding the results. To avoid
counting any pair of configurations �m	, �m�	 twice we allow
in the above procedure only jumps in one, clockwise, for
example, direction. In other words, given configuration �m�	
and a given hopping particle contribute at most one term
�none, if the site to the right of the hopping particle is already
occupied in �m�	�. Focus now attention on a given hopping
particle in �m�	. Assume that its distance �in units of a� from
its nearest neighbor in the counterclockwise direction �i.e., to
its left� is l while the distance in the clockwise direction �to
its right� is r, where l and r are integers. In the final configu-
ration �m	 the corresponding distances of the hopping par-
ticle are r−1 and l+1. The equilibrium probability P�m�	

eq is a

complicated function of �1 ,�2 , . . . , l ,r , . . . ,�N−1 ,�N which
are the lengths of the subsequent NN-pairs �N in total� in this
configuration. Among them, the particular lengths l and r

FIG. 2. The static factor, evaluated from Eq.
�30� for the system with the NN-pair interaction
given in Eq. �21�, for “low” and “high” tempera-
ture as a function of pressure P. The arrows in the
center of the intervals �Pq+1 , Pq� indicate the
pressure values Pq

xtr at which the static factor
reaches its local maximum value given in Eq.
�31�. The absolute maximum for the low tem-
perature case �� /��1�=200�, indicated by the ar-
row at the top, is well beyond the scale of the
graph.

FIG. 3. The same as in Fig. 2 but as a function
of coverage. For full coverage the static factor is
infinite because the system is ideally rigid. The
peaks at �=1/q are generated by the points
within the pressure interval �Pq+1 , Pq� in Fig. 2.
The horizontal arrow indicates the height of the
�=1/2 peak for � /��1�=25 �cf. the central peak
in Fig. 2�. The static factor for the noninteracting
system, cf. Eqs. �30� and �40c�, is shown for
comparison.
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appear at two adjacent positions in the list �l preceding r�.
The complication is, as before, due to the finite length L of
the entire system. Replacing the system with fixed L with a
system under an external pressure P results in replacing this
combined probability with a product p�1

p�2
. . . plpr . . . p�N

of
the probabilities defined in Eq. �14�.

We assume now that the jump rate of the process in which
the lengths of two adjacent NN-pairs, l and r, change into l
+1 and r−1, respectively, depend only on these two lengths
but does not depend on the lengths of all N−2 remaining
NN-pairs. This is a reasonable assumption for the system in
which the jumping particle interacts only with the first neigh-
bors to its left and right. We denote this rate Wl+1,r−1

l,r . It is
related to the rate of the return jump in the counterclockwise
direction through the detailed balance condition

Wl+1,r−1
l,r plpr = Wl,r

l+1,r−1pl+1pr−1. �36�

With that, a contribution due to a particular initial configu-
ration �m�	 and a particular hopping particle in it is
Wl+1,r−1

l,r p�1
p�2

. . . plpr . . . p�N
. Summation over the initial con-

figurations involve N−2 summations over all � j’s from 0 to
�, which add up to 1N−2 because p�’s are normalized. The
hopping particle can be any of the N particles in the system,
summing over this possibility results in the overall factor N.
Finally, we have summation over the lengths l and r starting
from 1 and 2, respectively. The final result is

M�k;P,T,N� = �ka�2N

l=1

r=2

�

Wl+1,r−1
l,r pl�P,T�pr�P,T� . �37�

This general expression allows investigating diffusion in sys-
tems with different kinetics and with different interaction
models. The only restriction is NN approximation.35 Al-
though the summation in Eq. �37� runs only over the jumps
in the clockwise direction a simple transformation using the
detailed balance can convert the sum to run exclusively over
the counterclockwise jumps.

III. PARTICULAR INTERACTION CASES

Let the energy of an isolated particle adsorbed at an arbi-
trary lattice site be EA

0 . The sites are separated by potential
energy barriers at which the potential energy of a particle is
EB

0 , higher than EA
0 . With no particle-particle interactions a

particle must be supplied an energy EB
0 −EA

0 from a thermal
bath of the substrate so the isolated particle jump rate is

W0 = �0e−��EB
0−EA

0 �, �38�

where �0 is referred to as an attempt frequency and �
=1/kBT. For the many-particle system the mutual interac-
tions modify both the thermodynamic properties of the sys-
tem as well as the kinetic ones. We want to analyze the
resulting coverage dependence of the chemical diffusion co-
efficient as well as that of the kinetic and static factors, de-
fined in Secs. II C and II D. It is worthwhile to start with the
simplest interaction models in order to confront the results
with the results already known.

A. Noninteracting lattice gas

With no interactions ����=0 for all �’s and Wl+1,r−1
l,r =W0.

The only restriction is that no two particles can occupy the
same site. The calculation of Z1 and M reduces to summa-
tions of exp�−�aP�� over �. Defining an auxiliary parameter
s,

s = e−�aP, �39�

and using Eqs. �14�–�17� and �30� we get

Z1�P,T� =
s

1 − s
, �40a�

��� �
1

�
=

1

1 − s
, �40b�

N�k = 0;P,T,N� = Ns = N�1 − �� , �40c�

while the kinetic factor �the numerator�, from Eq. �37�, is

M�k;P,T,N� = �ka�2NW0s = �ka�2NW0�1 − �� . �41�

Equation �40b� is the equation of state relating pressure cov-
erage and temperature. Upon combining these results the fac-
tors 1−� in Eqs. �40b� and �41� cancel out yielding the
chemical diffusion coefficient

D��� = W0a2, �42�

which does not depend on coverage. This well-known result
was derived repeatedly using various approaches.8,24,37

B. Short-range interactions

In this case the particles interact only when they occupy
neighboring sites. Following Ref. 25 we assume

���� = �J for � = 1

0 for �  2,
� �43�

with repulsive interactions between particles at nearest-
neighbor sites for J�0 and attractive ones for J�0. The
kinetics is defined by specifying four hopping rates

Wl+1,r−1
l,r = �

W0; l  2,r  3; ¯�� → ��¯

�; l = 1,r  3; ¯�� → ��¯

R; l  2,r = 2; ¯�� → ��¯

T; l = 1,r = 2; ¯�� → ��¯

� .

�44�

An arrow in Eq. �44� identifies a particular atomic jump tak-
ing an atom denoted by a � to an empty site � immediately
to the right of the arrow. The sites to the left of the initial and
to the right of the target site may be either vacant ��� or
occupied ���—the hopping rate depends on these occupation
states. A string of more distant sites whose occupation does
not affect the hopping rate and which can either be occupied
or empty is represented by ¯. With the interaction parameter

p = e�J, �45�

the detailed balance condition for the rates R and �, corre-
sponding to jumps in opposite directions, reads
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� = pR . �46�

Also in this case all quantities of interest can be obtained by
calculating sums of exp�−�aP�� over � starting from 1, 2, or
3. We get

Z1�P,T� = s�1

p
+

s

1 − s
� , �47a�

��� �
1

�
= 1 +

ps

�1 − s��1 + �p − 1�s�
, �47b�

N�k = 0;T,P,N� =
Nps�1 + �p − 1�s2�

�p + �1 − p��1 − s�2�2 , �47c�

where Eq. �47b� is the equation of state allowing one to
determine the � dependence of s �i.e., of P�. The kinetic
factor is as easy:

M�k;P,T,N� = �ka�2 Ns3

�Z1�P,T��2

� �W0� s

1 − s
�2

+ 2R
s

1 − s
+

T

p
� . �48�

Combining these results according to Eqs. �8� and �9� we get
the collective diffusion coefficient

D�s���� = a2 ps2�p + �1 − p��1 − s�2�2

�1 + �p − 1�s�2�1 + �p − 1�s2�

� �W0 + 2R
1 − s

s
+

T

p
�1 − s

s
�2� , �49�

which agrees with the result obtained in a more complicated
way in Ref. 25 where numerical implications and a detailed
comparison with results of numerical simulations are pre-
sented �s is denoted r there�. Here, we note only that the
result in Eq. �49� exhibits the particle-hole symmetry: it re-
turns the same function of � upon the exchanges W0↔T and
�↔ �1−��. Also, with W0=T=R=� and, consequently, with
p=1, all results from Sec. III A are reproduced.

C. Long-range interactions

Here, we assume that the particles interact at an arbitrary
distance as long as there are no particles between them.
Static properties of such a system, investigated in Ref. 35,
have been summarized in the concluding paragraph of Sec.
II B. Although many qualitative properties of the system do
not depend on the particular functional form of the interpar-
ticle interaction as long as it is repulsive and, as a function of
�—considered as a continuous variable—is a convex func-
tion vanishing faster than �−1, we will be illustrating our
results for the long-range interaction energy given in Eq.
�21�.

To specify the kinetics we propose to investigate three
distinct models with different interactions between the acti-
vated hopping particle, instantaneously at a bridge site be-
tween its initial and the target adsorption site, and other ad-
sorbed particles. The models are defined in three separate

sections, Secs. III C 1–III C 3, to follow. Each model leads to
different expression for the kinetic factor M�k ; P ,T ,N�, cf.
Eqs. �55�, �58�, and �61� to follow, and the full diffusion
coefficient is obtained by multiplying either of them by the
same static factor 1 /N�k=0; P ,T ,N� discussed in Sec. II C
and displayed in Figs. 2 and 3.

1. Interacting activated particle: Averaged bridge-site potential
energy

We consider first a class of kinetic models obtained by
relating the height of the potential barrier which a hopping
particle must surmount while hopping between adjacent ad-
sorption sites to the potential energies of the particle at either
its initial or target adsorption site or both. We consider the
particle hopping from the adsorption site specified by a pair
of integers �l ,r� �i.e., with the nearest-neighbor adsorbed par-
ticles being at a distance al and ar, respectively, to its left
and right� to a neighboring site �l� ,r��. Of course, l+r= l�
+r� is the distance between the neighbors themselves, and
l�− l=r−r�= ±1 with the upper/lower sign pertaining to the
jump in the clockwise/counterclockwise direction. The po-
tential energy at the initial adsorption site is

EA = EA
0 + ��l� + ��r� , �50�

and a similar expression holds for the potential energy at the
target site. The hopping rate can be written as

Wl�,r�
l,r = W0e−���

l�,r�
l,r

−��l�−��r��, �51�

where �l�,r�
l,r is the amount by which the potential energy of

the hopping particle at a bridge site between its initial and
the final position is modified by interactions with the neigh-
bors at each its side.

The model of kinetics which we consider is best defined
by denoting, for simplicity, E=��l�+��r�, E�=��l��+��r��
and assuming that the potential energy correction at the bar-
rier site, �l�,r�

l,r , is fully determined by these energy correc-
tions at both involved adsorption sites, i.e., �l�,r�

l,r =��E� ,E�.
One possibility is to assume that the potential energy at the
bridge site is modified due to interactions by exactly the
same amount as is the potential energy at that of the two
adsorption sites involved which, after modifications, remains
deeper of the two. Therefore the barrier height correction and
the resulting from Eq. �51� hopping rate are

��E�,E� = min�E�,E� ,

Wl�,r�
l,r = W0�e−��E�−E� for E� � E

1 for E�  E .
� �52�

One can verify that the rates satisfy the detailed balance con-
dition. For repulsive interactions the hopping rates are either
the same as or faster than that for an isolated particle �W0�.

In the other extreme case the potential energy at the
bridge site is modified by the same amount as that at that
adsorption site which remains shallower of the two. In this
case

��E�,E� = max�E�,E� ,
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Wl�,r�
l,r = W0�1 for E� � E

e−��E�−E� for E�  E .� �53�

Here, the repulsive interactions slow down the rates or leave
them unchanged in comparison to W0. This does not imply
the overall slowing down of diffusion �or speeding it up for
the model in Eq. �52�� by the interactions because, as we
have already seen, the static factor also depends strongly on
interactions.

We wish to examine a continuum of models of kinetics
between the two extremes listed above. In the simplest case
we assume that ��E� ,E� is a weighted average �with weight
controlled by a continuous parameter �� of the barrier cor-
rections from Eqs. �52� and �53�. The barrier height correc-
tion and the resulting hopping rate are

��E�,E� =
1

2
��1 + ��min�E,E�� + �1 − ��max�E,E��	

=
1

2
�E + E� − �E − E�	 ,

Wl�,r�
l,r = W0e−��E�−E�/2e��E�−E/2

= W0e−����l��+��r��−��l�−��r��/2

� e����l��+��r��−��l�−��r�/2. �54�

For �= +1 and �=−1 we obtain the models of kinetics from
Eqs. �52� and �53�, respectively. For �=0 the interaction in-
duced barrier height correction is an arithmetical average of
the potential energy corrections at both adsorption sites in-
volved.

Using the above rate for l�= l+1 and r�=r−1 in Eq. �37�
yields the following expression for the kinetic factor

M�k;P,T,N� = �ka�2 NW0

�Z1�P,T��2e−�aP

��

�=1

�

e−������+���+1�+2a�P�

+ 2

�=2

�

e−���1−��/2���+1�+�1+��/2����+a�P�

� 

��=1

�−1

e−���1−��/2�����+�1+��/2����+1�+a��P�� .

�55�

Note that the single sum together with the preceding term
e−�aP can be written as 
�=1

� p��P ,T�p�+1�P ,T�, where
p��P ,T� is defined in Eq. �14� probability of a pair of length
a�. Only for �= ±1 the double sums contribution can be also
written in terms of products of such probabilities. The results
are

�M�k;P,T,N�
�ka�2NW0 �

�=−1
= 


�=1

�

p�p�+1 + 2

�=2

�



��=1

�−1

p�+1p��

� pq�pq−1 + pq+1� , �56a�

�M�k;P,T,N�
�ka�2NW0 �

�=+1
= 


�=1

�

p�p�+1 + 2

�=2

�



��=1

�−1

p�p��+1 � 2pq,

�56b�

where the approximate expressions are valid for P between
Pq+1 and Pq�q=2,3 ,4 , . . . � but further away from the inter-
val ends than 1/�a �Pq’s are defined in Eq. �19��. Within this
interval pq�P ,T��1 so the kinetic factor is approximately
independent of P for �= +1. For �=−1 only one of the two
terms dominates in the sum pq−1�P ,T�+ pq+1�P ,T� so the ki-
netic factor exponentially decreases with P for P� Pq

xtr and
increases above Pq

xtr, i.e., its pressure dependence is exactly
inverse to that of the static factor shown in Eq. �32�. This
will be seen explicitly later on in Sec. IV—in Fig. 4, in
particular. Consequently varying models of kinetics by
changing the control parameter � we expect, at low tempera-
tures at least, a continuous transition from almost perfect

FIG. 4. Pressure dependence of the diffusion coefficient kinetic
factor �the numerator� defined in Eq. �55� �averaged bridge-site en-
ergy model� for the interaction energy in Eq. �21� for low �a�, and
high �b� temperatures for several values of the control parameter �.
The inset in panel �a�: a magnified view around pressures P4 and
P5. The static factor from Fig. 2 is also plotted.

MAGDALENA A. ZAŁUSKA-KOTUR AND ZBIGNIEW W. GORTEL PHYSICAL REVIEW B 74, 045405 �2006�

045405-10



compensation between the kinetic and the static factor, re-
sulting in the diffusion coefficient which depends very
weakly on P and � �case of �=−1� to no compensation at all,
resulting in the diffusion coefficient following, as a function
of P or �, variations of the static factor �case of �= +1�.

2. Noninteracting activated particle

We turn our attention to a model of kinetics most fre-
quently used in numerical simulations. Here, only the energy
of the nonactivated hopping particle at its adsorption sites is
modified by interparticle interactions while the energy at a
bridge site between the initial and the target adsorption site
remains the same as for isolated particles. This results in the

hopping rate given in Eq. �51� with �l,r
l�,r�=0

Wl�,r�
l,r = W0e����l�+��r��, �57�

which are faster than W0. This should lead to more efficient
diffusion with increasing coverage.

Using the rates given in Eq. �57� in Eq. �37� the diffusion
coefficient kinetic factor becomes

M�k;P,T,N� = �ka�2 NW0

�Z1�P,T��2

s3

�1 − s�2 , �58�

where s is given in Eq. �39� and Z1�P ,T� must be evaluated
from Eq. �16� using particular interaction function ��l�. The
diffusion coefficient is obtained using Eqs. �58� and �30� in
Eqs. �8� and �9�. All statistical sums, e.g., Eq. �16�, must be
evaluated numerically.

Two observations can be made even before numerical re-
sults are presented: �i� At full coverage all hopping events
effectively occur for l=1 and r=2 so, at a microscopic level,
diffusion is due to a random walk of holes hopping between
the adjacent sites at a rate W0 exp�5���1� /4� �for ��l� given
in Eq. �21��. Therefore the diffusion coefficient at �=1 is
expected to be exp�5���1� /4� times larger than that at �=0.
Obviously, the 1/ �1−�� divergence of the static factor in the
�→1 limit �cf. Fig. 3� has to be exactly compensated by the
1−� dependence of the kinetic factor. �ii� The kinetic factor
in Eq. �58� depends on the particular form of ��l� only
through Z1�P ,T�. Consequently, the result in Eq. �58� should
also be valid in the case of short-range interactions, defined
in Eq. �43�, provided we select hopping rates corresponding
to the interaction-independent barrier heights. This means
R=W0 and T=�= pW0 as easily seen by examining each case
listed in Eq. �44� and by using Eq. �46�. Indeed, with these
substitutions, Eq. �48� for the kinetic factor corresponding to
the short-range interaction case reduces to the one given in
Eq. �58�. The appropriate Z1�P ,T� is given in Eq. �47a� in
this case.

3. Interacting activated particle: Centered bridge-site

Obviously, there is no compelling reason for the potential
energy of the activated particle �at a barrier site� to be inde-
pendent of the interparticle interactions. Apart from a model
proposed in Sec. III C 1 one of the simplest models taking
into account such interactions is obtained by realizing that
the particle at the adsorption site �l ,r� hopping to the site

�l+1,r−1� surmounts a potential energy barrier at a bridge
site situated, approximately, at a distance l+ 1

2 and r− 1
2 from

its nearest left and right adsorbed particle, respectively, and
by evaluating the bridge site potential energy using ��l� gen-
eralized to half-integer arguments. Consequently, in analogy
to Eq. �50�, the potential energy correction at the bridge site
between �l ,r� and �l+1,r−1� adsorption sites is

�l+1,r−1
l,r = ��l +

1

2
� + ��r −

1

2
� , �59�

which, used in Eq. �51�, leads to the following hopping rate
for the clockwise jumps:

Wl+1,r−1
l,r � �0e−��EB−EA� = W0e−����l+1/2�+��r−1/2�−��l�−��r��.

�60�

It is easy to check that a similar expression for the counter-
clockwise jumps with �l−1,r+1

l,r =��l− 1
2

�+��r+ 1
2

� is consistent
with the one obtained from Eq. �60� using the detailed bal-
ance condition and that for l=r the jump rates from the site
�l ,r= l� in the clockwise and the counterclockwise directions
are the same.

Using Eq. �60� in Eq. �37� yields the kinetic factor

M�k;P,T,N� = �ka�2 NW0

�Z1�P,T��2�

�=1

�

e−��̃��+1/2��2

,

�61�

in which the definition of �̃ in Eq. �16� is used. Similarly like
in Z1�P ,T� in Eq. �16� the main contribution to the sum over
� in Eq. �61� comes from one or at most two terms for low
enough temperatures but, for a given value of P, they may
correspond to different � than terms most significant in Z1. In
general, the sum has to be evaluated numerically.

IV. NUMERICAL RESULTS AND DISCUSSION

Presenting the results we want to pay particular attention
to the question: how much of the coverage dependence of the
static factor �which is inversely proportional to the isother-
mal compressibility—cf. Eq. �30�� is evident in the concen-
tration dependence of the collective diffusion coefficient. For
the noninteracting system, for example �cf. Sec. III A�, the
coverage dependence of the static factor proportional to
1/ �1−�� is exactly compensated for by the 1−� dependence
of the kinetic factor. This results in the coverage independent
collective diffusion coefficient. The static factor does not de-
pend on details of kinetics of particle migration—it depends
only on interparticle interactions �and the substrate—particle
interactions� for particles adsorbed at the regular adsorption
sites. The kinetic factor depends on these interactions too but
it depends also on interactions between a migrating particle
in an activated state and the rest of the system. In this work
we have proposed several models of kinetics possible for a
system with an equation of state leading to a static factor
exhibiting sharp peaks at certain isolated values of coverage
�at which the system has abnormally low compressibility�.
Superficially, one might expect that such singular behavior
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would be difficult to compensate for in a kinetic factor and,
consequently, the collective diffusion coefficient would also
increase sharply at these values of coverage.

In what follows we will examine the coverage depen-
dence of the kinetic factor and the diffusion coefficient for
the system with long-range interactions and present all nu-
merical results for the interaction energy given in Eq. �21�.
To understand the coverage dependence of all quantities in-
volved here it is advantageous to examine, at the same time,
their pressure dependence. We have seen already for the
static factor that its coverage dependence in Fig. 3 can be
easily rationalized by combining its easily understandable
pressure dependence �Fig. 2� with the shape of the isotherms
of the system, shown in Fig. 1. The systems with short-range
interactions, described in Sec. III B, were already analyzed,
albeit from a different perspective, in Ref. 25.

We start with the averaged bridge-site potential energy
model of kinetics �Sec. III C 1� in which the control param-
eter � allows one to tune the dependence of the hopping
barrier height on the initial and the target adsorption site
potential energy of a hopping particle. The kinetic factor is
plotted in Fig. 4 as a function of pressure and in Fig. 5 as a
function of coverage for two temperatures used already in
Figs. 1 and 2 for several values of the parameter �. The static
factor, also shown in these figures, is the same as in Figs. 2
and 3. Concentrating at lower temperature �Fig. 4�a�� we

note that for P� P2 for which, according to Fig. 1, the cov-
erage is �=1, the kinetic factors for all values of the control
parameter � decrease exponentially with pressure at the ex-
act same rate as the static factor increases. We have a perfect
compensation here. We have seen in Fig. 3 that the static
factor is proportional to 1/ �1−�� for �→1 and the behavior
observed in Fig. 4 indicates that the kinetic factor should,
therefore, be proportional to 1−� in this limit.

For P� P2 the kinetic factor depends on �, i.e., it depends
on details of kinetics. At the end Sec. III C 1 we have argued
that for kinetics corresponding to �=−1, pressure and cover-
age dependence of the kinetic factor should almost perfectly
compensate those of the static factor while for �= +1 there
should be no compensation at all. This is, indeed, the case in
Fig. 4�a� where the kinetic factor for all negative values of �
is practically identical in the interval of P� P4. In the loga-
rithmic plots in Figs. 4�a� and 5�a� the kinetic factor looks
almost like a mirror image of the static factor indicating an
almost perfect compensation in this interval. For P� P4 the
arguments used to derive the approximate result in Eq. �56a�
no longer applies because the length of the intervals �P5 , P4�,
�P6 , P5� , . . ., become first comparable and then smaller than
1/�a even at these low temperatures �cf. inset in Fig. 4�a��.
For �= +1 the opposite is true. Here, in agreement with Eq.
�56b� and the discussion below it, the kinetic factor is almost
independent of P for pressures up to P2. In Fig. 5 �� depen-
dence� the �= +1 line is almost featureless and only when
�→1 it joins the 1−� behavior together with lines corre-
sponding to other �’s. We have no compensation here and
the P and � dependence of the diffusion coefficient should
follow those of the static factor. It is, therefore, easy to un-
derstand the behavior of the diffusion coefficient observed in
Figs. 6�a� and 7�a�. The diffusion coefficient for �= +1
closely follows the lines representing the static factor �except
for P� P2� with sharp peaks at �=1/2 and 1/3 and a broader
maximum around �=1/4 �cf., Fig. 7�a�� while no singular
feature of the static factor survives in diffusion for �=−1. In
the latter case the diffusion coefficient reaches around �
=0.2 a broad maximum about an order magnitude above its
low coverage value W0a2 and then decreases slowly back to
W0a2. For all ��0 the P and � dependence of the kinetic
factor �and, consequently, the diffusion coefficient� is almost
identical to that for �=−1, the differences occur only for P
� P3. For ��0 the limiting �= +1 behavior is reached
gradually: while the kinetic factor still compensates the P
dependence of the static factor close to P= P2 , P3 , . . . it be-
comes independent of P around P2

xtr, P3
xtr, etc. over intervals

of P which grow with increasing �. This is evident in Fig.
4�a� in a progression of lines corresponding to �= +0.5,
+0.75, and +1. The resulting diffusion coefficient depen-
dence on P and � can be seen in Figs. 6�a� and 7�a�. In
particular peaks at �=1/2, 1 /3, and 1/4 become smaller
with increasing � until for �= +1 they disappear entirely.

All the features seen in Figs. 4�a�–7�a� at low tempera-
tures are also present in panels �b� of the figures, correspond-
ing to a higher temperature. With 1/�a being almost an or-
der of magnitude higher than in panels �a� of the figures, all
the sharp features in the P dependence are rounded off and
the resulting diffusion coefficient has only one sharp peak at
�=1/2 �Fig. 7�b�� which, of course, disappears for the model
of kinetics corresponding to �= +1.

FIG. 5. The same as in Fig. 4 but as a function of coverage. The
static factor is the same as in Fig. 3. Sharp minima of the kinetic
factor occur for models with lower � at �=1/q, q=2,3 , . . . at which
the static factor has sharp maxima. Peak values are listed in cases
where they are outside the plotted range.
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A characteristic feature of all models of kinetics discussed
above �and defined in Sec. III C 1� is that at the full coverage
the hopping rate of an isolated hole is the same as the hop-
ping rate of an isolated particle at �=0. Consequently, the
diffusion coefficient is equal to W0a2 in both these limits.
This is not the case for two remaining models of kinetics
investigated here: noninteracting activated particle model of
Sec. III C 2 and the centered bridge-site model of Sec.
III C 3. For full coverage all hopping events �in the presence
of a single hole� occur for l=1 and r=2 �clockwise direction�
resulting in an isolated hole hopping rate which is larger than
W0 by a factor of exp�5���1� /4� for the former �cf. Eq. �57��
and of exp�13���1� /36� for the latter model �cf., Eq. �60��.
Consequently, the diffusion coefficient is expected to in-
crease in both models by these factors �i.e., by many orders
of magnitude� when the coverage increases from 0 to 1. This
is seen in Figs. 8 and 9. The static factor �the same as in Figs.
2 and 3, respectively�, the kinetic factor, and the collective
diffusion coefficient are plotted in Fig. 8 as functions of P
for the activated state interaction model of Sec. III C 2 �non-
interacting activated particle—curves �a�� and that of Sec.
III C 3 �centered bridge-site—curves �b��. The coverage de-
pendence of the same quantities is plotted in Fig. 9. The
higher of the two temperatures considered so far is used in
the plots. As seen in Fig. 8, the compensation between the

static and the kinetic factor is more complicated than in cases
discussed so far. We have the “usual” compensation for P
� P2. There is also compensation below P2 but only down to
P2

xtr �a middle-point between P3 and P2, cf., above Eq. �31��
below which the kinetic and the static factor increase expo-
nentially with P at the same rate leading to even faster in-
crease of the diffusion coefficient. Below P2 all sharp fea-
tures are masked by the thermal effect of high temperature.
Consequently, the diffusion coefficient raises rapidly with P
until P= P2

xtr and then varies slowly because of an almost
perfect compensation. The initial increase is particularly
rapid in the noninteracting activated particle model. Translat-
ing this behavior to the coverage dependence �Fig. 9� we
observe a rapid increase of the diffusion coefficient with �
followed by a sharp, almost discontinuous increase at �
=1/2 �its origin is similar to that of the peak at �=1/2 in the
models considered before� after which the diffusion remains
almost constant. For the centered bridge-site model the entire
increase of the diffusion from its value at �=0 to that at �
=1 occurs almost discontinuously around �=1/2.

V. COMMENTS ON DEVIL’S STAIRCASE SYSTEM

As already mentioned in Sec. I, this work is partially mo-
tivated by experiments20,21 indicating that Pb adsorbed at the
Si�111� surface provides an example of the devil’s staircase

FIG. 6. Pressure dependence of the chemical diffusion
coefficient—a product of the static factor �shown also here in this
plot� and the kinetic factors presented in Fig. 4. The values of
temperature and those of the control parameter � are the same as in
Fig. 4.

FIG. 7. The same as in Fig. 6 but as a function of coverage. The
diffusion coefficient peaks at coverages �=1/q, q=2,3 , . . . for
lower values of the control parameter �. The peak values are given
when they are outside of the plotted range.
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system with a high degree of self-organization driven by
long range repulsive interactions between the adsorbed at-
oms. Fast transformations from one structural phase to an-
other one upon minute changes in coverage, which occur at
low temperatures without any annealing of the system and
which require reorganization of the adsorbate over macro-
scopic regions, suggest that the diffusion coefficient, as a
function of coverage, has sharp maxima at slightly differing
from each other coverages equal to irreducible ratios of small
integers, �=m /n.

Equilibrium properties of the Ising Model devil’s staircase
system have been investigated in the past32 and in the context
of the present work it is isomorphic with a one-dimensional
lattice gas in which any particle, at a lattice position �i say,
interacts with any �not only the nearest� particle at � j. The
interaction must be repulsive and its energy ���i−� j� must
decline faster than 1/ �i−� j and be a convex function of its

argument. The isotherms for this system, e.g., plots of cov-
erage � vs chemical potential � have, at low temperatures, a
fractal devil’s staircase character with an infinite number of
plateaus at rational number coverages �=m /n. The interval
of � over which the phase corresponding to �=m /n �with
m�n� is stable, i.e., the width of the �=m /n plateau, is32

���m

n
� = n


s=1

�

s���ns − 1� − 2��ns� + ��ns + 1�� . �62�

It does not depend on m and the stability decreases with
increasing n �due to decrease of ���� with increasing ��. In
the order of decreasing stability we have: the most stable
phase corresponding to �=1/2; two equally stable phases
with �=1/3 and 2/3; the next two with �=1/4 and 3/4;
followed by four equally stable ones with �=1/5, 2 /5, 3 /5,
and 4/5, and so on. Note the similarity between Eq. �62� and

FIG. 8. Pressure dependence of the static fac-
tor �same as in Fig. 2�, the kinetic factor, and the
resulting diffusion coefficient for: �a� the nonin-
teracting activated particle model of Sec. III C 2
�Eq. �58�� and �b� the centered bridge-site model
of Sec. III C 3 �Eq. �61�� for the higher of the two
temperatures used in previous figures.

FIG. 9. The same as in Fig. 8 but as a function
of coverage. The static factor is the same as in
Fig. 3. �a�—the non-interacting activated particle
model of Sec. III C 2 �Eq. �58�� and �b�—the cen-
tered bridge-site model of Sec. III C 3 �Eq. �61��
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the expression �19� for the stability interval �Pq of the �
=1/q phase for the staircase system.

Theoretical investigation of collective diffusion in the
devil’s staircase system is a formidable mathematical task
and even full � dependence of the static factor encounters
unsurmountable difficulties. We may, however, assume that
the inverse of the static factor is for this system proportional
to the isothermal compressibility, like it is for the staircase
system, i.e., it is given by the first line of Eq. �30� which,
written in terms of particle number fluctuations gives N
= ��N2�− �N�2� / �N�. Then, a calculation similar to that lead-
ing to Eq. �31� results in the following expression for the
maximum value of the static factor reached for � at the
center of the plateau corresponding to �=m /n �as before, the
overall factor 1 /N is ignored in N�

� �N�2

�N2� − �N�2�
max

=
1

2
� n

m
�2

e�1/2�����m/n�. �63�

Peak values of the static factor evaluated from Eqs. �63�
and �62� for coverages �=m /n with n�30 are shown in Fig.
10. The same value of the parameter kBT /��1� corresponds
to a different absolute temperature in the devil’s staircase
system than it does in the staircase system. Consequently,
one should avoid making quantitative comparisons between
results for both models even if complete expressions for the
static and kinetic factor were available for the devil’s stair-
case model. One may conclude from Fig. 10 that, after ther-
mal broadening is accounted for, the coverage dependence of
the static factor should show very sharp, almost singular
peaks at coverages �=m /n corresponding to the first few
lowest values of n. Higher order peaks �higher n� would be
smeared out into a background several orders of magnitude

below the dominant peak values. As we have seen for the
staircase system the behavior of the kinetic factor might but
does not have to result in the diffusion coefficient which
follows closely the coverage dependence of the static factor.
If it does, then fast reorganization of the system from one
high-peak value structural phase to another one close to it
may be expected even at very low temperatures when a small
number of extra particles are added to the system. One might
risk here a conclusion that the fact that such a fast self-
organization is observed in a dense phase of Pb/Si�111�-
�3��3 �Refs. 20 and 21�, �a devil’s staircase system not
necessarily isomorphic with the Ising Model devil’s stair-
case� indicates that the static factor has here a decisive influ-
ence on the coverage dependence of the collective diffusion
coefficient.

VI. SUMMARY

We have generalized in this paper the proposed in Ref. 24
variational approach to collective diffusion. The generaliza-
tion allows one not only to reproduce in a more transparent
way than it was done in the original work all results obtained
earlier for lattice gas systems with short-range interactions
but it also allows one to investigate within the same theoret-
ical framework systems with long-range repulsive interac-
tions. In particular, coverage �i.e., the particle density� de-
pendence of the collective diffusion coefficient is
investigated here in detail for the originally proposed in Ref.
35 one-dimensional system with a staircaselike phase dia-
gram. Within our variational approach in which factorization
of the diffusion coefficient into the thermodynamic �static�
and kinetic factor �cf. Eq. �1�� is not postulated both these
factors have been now unambiguously identified and their
dependence on pressure and coverage is investigated. As ex-
pected, the static factor exhibits as a function of coverage a
series of sharp, almost singular peaks at coverages �=1/q
�q=2,3 ,4 , . . . � for which the system is in a crystalline stable
phase. The peaks are due to the low compressibility of such
phases. At low temperatures the peak values are many orders
of magnitude higher than the value of the static factor for
��1/q when the system is in an unstable liquid phase in
which compressibility is high. The coverage dependence of
the kinetic factor is more complicated and more interesting.
Depending on details of the interactions of the migrating
particle instantaneously at the top of the potential barrier
between its initial and target adsorption site, i.e., the acti-
vated state interactions, the kinetic factor may exhibit: �i�
singular minima at �=1/q, leading to a partial or complete
compensation resulting in smooth coverage dependence of
the diffusion coefficient, or �ii� it may have no singular struc-
ture at all resulting in the diffusion coefficient reflecting the
singular structure of the static factor, or �iii� the kinetic factor
may change in an almost steplike fashion at �=1/q with the
resulting diffusion coefficient showing similar discontinui-
ties. Complete calculations of diffusion coefficient are not
yet possible for a true devil’s staircase system of Refs. 32,
34, and 33 with a fractal structure of the phase diagram
�crystalline phases are for �=m /n with m ,n being integers�.
We speculate here, however, that the fast low temperature

FIG. 10. Peaks of the static factor, Eq. �63�, reached at cover-
ages �=m /n for the full devil’s staircase system. For clarity, only
peaks for coverages corresponding to n�30 are displayed.
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self-reorganization between crystalline structures corre-
sponding to infinitesimally different coverage phases ob-
served for the Pb/Si�111� system indicates a singular cover-
age dependence of the diffusion coefficient listed above as
�ii�. In other words, the activated state interactions result
most likely in the kinetic factor which is unable to compen-
sate for the singularities present in the static factor.
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