
Collective diffusion in an interacting one-dimensional lattice gas:
Arbitrary interactions, activation energy, and nonequilibrium diffusion

Łukasz Badowski* and Magdalena A. Załuska-Kotur†

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

Zbigniew W. Gortel‡

Department of Physics, University of Alberta, Edmonton, T6G 2J1 Alberta, Canada
�Received 28 April 2005; revised manuscript received 4 October 2005; published 13 December 2005�

Collective diffusion is investigated within the kinetic lattice gas model for a system of interacting particles
in one dimension. Analytic relations between the collective diffusion coefficient, diffusion activation energy,
the attempt frequency pre-exponential factor, vs the particle density for both attractive and repulsive particle-
particle interactions of an arbitrary strength are derived using the recently proposed �Phys. Rev. B 70, 125431
�2004�� variational method. The analytic results agree with results of Monte Carlo simulations within a broad
range of temperatures. At low coverages for strongly repulsive interactions the activation energy is roughly
equal to its value for the noninteracting system but around �=0.5 it decreases rapidly by more than strictly
accounted for by adparticle-adparticle interactions. Only at significantly higher coverages it increases reaching
the expected limiting value. Peaks in the coverage dependence of the effective attempt frequency �for both the
repulsive and the attractive interactions� are interpreted to reflect peaks in the total number of microscopic
configurations accessible to the system at a given coverage and temperature. It is argued that the method used
in this work allows for making meaningful estimates of the diffusion coefficient for systems far from thermal
equilibrium.
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I. INTRODUCTION

Kinetics of one-dimensional �1D� systems has recently
become practically relevant as several experimentally stud-
ied and technologically important structures have 1D geom-
etry. For example, static and dynamic properties of atoms
confined in carbon nanotubes are now intensively studied;1–3

diffusion of Au or Si atoms on top of Si�111�5�2-Au chain
structure has one-dimensional character,4,5 etc. Interactions
in these 1D structures modify or even decide about the char-
acter of the system kinetics. In this work we calculate and
analyze the collective diffusion coefficient that accounts for
the rate of decay of long wavelength particle density fluctua-
tions. When interactions between adsorbed atoms are present
the collective diffusion becomes a complicated many-body
problem,6–12 but recently13 an analytic method for calculat-
ing a density dependent diffusion coefficient for a system of
interacting particles on a one-dimensional lattice was de-
signed. Diffusion coefficient was extracted from a specific
�referred to as diffusive� eigenvalue of a rate matrix describ-
ing kinetics of microscopic states of the system. Transitions
between microstates are due to particle jumps from one site
to another �provided such jump is allowed� and every such
jump occurs at a specific jump rate. Following Ref. 13 we
write master equations for the system in the form

�Pi

�t
= �

j�i

�wijPj − wjiPi� , �1�

where Pi is a probability of finding the system in certain
microscopic state i and wij is the transition rate from the
microstate j to i. Together with the detailed balance condi-

tion these equations form a complete description of micro-
scopic kinetics of the system. Each microstate is character-
ized by a position of an arbitrarily selected reference particle
and by a microscopic configuration defined as a set of posi-
tions of all remaining particles with respect to the reference
particle. The transition rates depend, in general, only on the
initial and the final configuration. By imposing periodic
boundary conditions and applying to this set of equations a
lattice Fourier transform with respect to the position of the
reference particle, a set of k-dependent rate equations is ob-
tained. The indices of the k-dependent rate matrix Mi,j�k�
corresponding to this set refer to configurations rather than
microstates. A matrix element Mji�k� for i� j is related to a
rate of the i to j transition. It may carry a k-dependent factor
due to the phase difference between the sites involved in the
jump. The diagonal matrix elements Mii are related to jump
rates out of the configuration i. See Eq. �16� later on. Gen-
erally, the matrix elements depend on k and a �the lattice
constant�. The diffusion coefficient is extracted from the dif-
fusive eigenvalue of the matrix—defined as the eigenvalue
that is proportional to �ka�2 for ka�1. Any eigenvalue of the
rate matrix may always be written as13

− � =
�i,j

ũjMjiui

�i
ũiui

=
�i,j

ũjMjiN�i�ũi
*

�i
ũiN�i�ũi

*
, �2�

where ũi and ui are the ith components of, respectively, the
left and the right eigenvector of the rate matrix correspond-
ing to this eigenvalue. The left and the right eigenvectors of
the rate matrix are not conjugated since, in general, the rate
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matrix is not Hermitian because transition rates between two
configurations in opposite directions are different. They are,
however, related to each other through N�i�—the probability
of the configuration i in equilibrium14—and this relation was
used to get the final result in Eq. �2�. The denominator in Eq.
�2� accounts for normalization. Approximations are needed
for both the components of the left eigenvector ũ as well as
for N�i�’s in order to use Eq. �2� and, following Ref. 13, we
seek the diffusive eigenvalue by evaluating

− � �
�i,j

� j
*MijN�i��i

�i
�i

*N�i��i

→ − k2D , �3�

in which components of the diffusive left eigenvector, ũi, are
approximated with �i

*, where

�i = 1 + e−ikan1
i

+ e−ikan2
i

+ ¯ + e−ikanN−1
i

, �4�

and the diffusion coefficient is extracted after the limit ka
�1 is taken, as indicated in Eq. �3�. In Eq. �4�, the term 1 at
the beginning represents the reference particle, with respect
to which the lattice Fourier transform was taken and
an1

i ,… ,anN−1
i �nj

i are integers� are distances of the remaining
N−1 particles from the reference particle in the configuration
i. In fact, the configuration i is fully specified by the set of
integers �n1

i ,… ,nN−1
i�.

It is worthwhile at this point to comment on the choice of
�i

*�k�’s, given in Eq. �4�, as candidates for ũi’s—components
of the diffusive left eigenvector of the rate matrix. It was
shown in Ref. 13 that �i

*’s are the components of the exact
diffusive left eigenvector of the rate matrix for a noninteract-
ing lattice gas with site blocking for which all allowed par-
ticle jumps occur at the same rate. Choosing �i’s to evaluate
−� for a system with interactions, accounting for them effec-
tively only in the rate matrix Mi,j and the probabilities N�i�,
is an approximation similar in its spirit to the variational
approach approximation in quantum mechanics where a
“guessed” wave function approximating true ground state
wave function is used to evaluate the expectation value of
the exact Hamiltonian. We are here on a less certain ground
than in quantum mechanics, however, because −� evaluated
for the non-Hermitian rate matrix Mi,j is not necessarily
bounded from below by the true eigenvalue. Also, there exist
quite intuitively clear guidelines helping to select physically
acceptable candidates for the ground state wave functions in
quantum mechanics. Such guidelines have not been worked
out yet to help with the choice of the components of the
diffusive eigenvector of the rate matrix. The only condition
which we are aware of is that all components of the left
diffusive eigenvector must have the same k→0 limit with
corrections linear in k. It assures that the evaluated approxi-
mate ��k� vanishes quadratically with k in this limit—the
condition which the diffusive eigenvalue must satisfy. Con-
sequently, �i�k� given in Eq. �4� is merely the simplest and
most obvious choice. Applying our approach to investigate
diffusion in a two-dimensional lattice gas with strongly re-
pulsive interactions,15 we have found it necessary to go be-

yond a direct two-dimensional generalization of Eq. �4�
while selecting the variational candidate for the diffusive
eigenvector.

A collective diffusion coefficient was evaluated from Eqs.
�3� and �4� in Ref. 13 for a one-dimensional lattice gas with
strong repulsive interactions and for a case in which the in-
teractions weakly modify the jump rates between the sites.
Recently, the method was successfully applied to investigate
collective diffusion in a two-dimensional lattice gas on a
square lattice in which strong repulsive interactions induce
structural organization of the gas into a c�2�2� phase.15 For
strongly repulsive interactions one could restrict summations
in the numerator and in the denominator in Eq. �3� to include
only a few types of configurations that are most probable in
equilibrium. The main technical obstacle, which so far has
prevented applying the method to cases with arbitrary short-
range interactions, is the necessity of dealing with a much
wider class of configurations than for strong repulsion, while
keeping finite the system size and the number of particles in
it. In such cases, summations over configurations lead to
multiple and strongly interdependent summations over occu-
pied lattice sites, and the task quickly becomes intractable. It
is a goal of this work to modify the method to be able to deal
with arbitrary interactions in the one-dimensional case. In
principle, the modification is simple: while dealing with
summations in Eq. �3� one opens the system by removing
restrictions imposed by its finiteness and introduces at the
same time a Lagrange multiplier to fix, on average, the par-
ticle density. In other words, rather than dealing with the
numerator and the denominator in Eq. �3� for a closed sys-
tem, one evaluates their “grand canonical” counterparts.

In Sec. II the theoretical method is formulated and ana-
lytic expressions for the grand canonical denominator, nu-
merator, and for the Lagrange multiplier are obtained. They
lead, in Sec. II C, to an approximate expression for the den-
sity dependent collective diffusion coefficient, D���, which is
confronted with the numerical simulation data in Sec. III.
Analytic results for D��� are used in Sec. IV to discuss fea-
tures of the particle density dependence of the activation en-
ergy and of the pre-exponential frequency factor commonly
used to parametrize the diffusion coefficient. This allows for
a connection to be made between the results of the present
work and the results obtained in Ref. 13. In Sec. V we pro-
pose a method of dealing with diffusion far from equilibrium
in certain cases, and Sec. VI is devoted to a short summary
of the paper. Some technical details not required for under-
standing the results are placed in two Appendixes.

II. THEORY

We stay within the one-dimensional model, as defined in
Ref. 13, of a lattice with identical potential wells with
minima at adsorption sites separated by a. Periodic boundary
conditions are accounted for by distributing all sites along
the circumference of a circle. Only the nearest neighbor in-
teractions between particles determine the particle jump
rates. Therefore, there are only four different types of jumps
�and four different rates� wij =W ,� ,R, and T as shown here,
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¯ � • → � � ¯ , W ,

¯ • • → � � ¯ , � ,

¯ � • → � • ¯ , R ,

¯ • • → � • ¯ , T . �5�

Jumps of a free particle occur at a rate W and all other rates
are determined by repulsive or attractive interactions be-
tween the particles.

For N particles in the system there are N bonds between
them �if the periodic boundary condition is taken into ac-
count�. A bond longer than a is referred to as a broken bond.
Otherwise, when its length is exactly a, it is referred to as a
saturated one. The number of broken bonds in a given con-
figuration is an integer s between 1 and N �corresponding,
respectively, to the maximum N−1 and the minimum 0 satu-
rated bonds�. Jumps occurring at rates W or T do not change
the number of saturated or broken bonds. A jump at a rate �
breaks a saturated bond, while a jump at a rate R saturates a
broken bond so, if J is the interaction energy, then the ratio
p=� /R has the following property:

p � 1 �repulsion� ,

p =
�

R
= e�J, p = 1 �no interactions� ,

p 	 1 �attraction� ,

�6�

where � is the inverse of temperature �times the Boltzmann
constant�.

The interaction energy of a configuration with s broken
bonds is �N−s�J. Consequently, the equilibrium probability
N�i� of a configuration i with si broken bonds is proportional
to psi. In fact, we can set N�i�� psi in Eq. �3� because any
factor normalizing the probability cancels out between the
numerator and the denominator there. Therefore,

− � �
�i,j

� j
*Mjip

si�i

�i
�i

*psi�i

=
X

Y
. �7�

A. Denominator

With �i given in Eq. �4� the product ��i�*�i in the de-
nominator Eq. �7�,

Y = �
i

�i
*psi�i, �8�

is a sum of exponentials eika�nj
i−nj�

i
� with relative positions of

all pairs of particles ��j , j��, including j= j�� in a particular
configuration i appearing in the exponent. The summation
over configurations in Eq. �8� can be rearranged into a more
manageable form. The idea is to consider patterns like

¯• ¯ 
 sites ¯ • ¯ ,

in which two selected particles are separated by 
 sites �oc-
cupied or empty�, determine how many times it occurs, mul-

tiply that number by a proper probability factor ps and then
sum over all possible distances 
. To proceed with this pro-
gram we divide the entire system of N particles into two
parts, referred to as the 
-section and the environment, as
shown in Fig. 1.

The number of particles, holes, and broken bonds in the

-section are denoted by n
 ,h
, and s
, respectively, while
n� ,h�, and s� denote the corresponding numbers in the envi-
ronment. Note that 
=n
+h
.

Any of the two subsystems �
-section or environment�
containing h holes �at least one� and n particles �at least one�
with s broken bonds �at least one� can be realized in the
following number of ways:

B�n,h,s� = �n

s
	�h − 1

s − 1
	 for n,h,s � 1, �9�

assuming that first site in the subsystem is occupied. In Eq.
�9� the number of possible partitions of n particles into s
clusters � n−1

s−1
�, is multiplied by the number of partitions of h

holes into s clusters � h−1
s−1

�, and then all possible positions of
the reference particle are summed up resulting effectively in
an extra factor n /s. In cases of no holes �h=0� or of no
particles �n=0� in the subsystem the number of possibilities
is 1.

For the entire system with specified N and H the number
of configurations corresponding to a given set of six param-
eters n
 ,h
 ,s
 and n� ,h� ,s� is equal to a product
B�n
 ,h
 ,s
�B�n� ,h� ,s�� and the probability factor is pS where
S=s
+s�. Summation over configurations in Eq. �8� becomes
a summation over all six parameters but the number of sum-
mations is reduced at least by two due to the restrictions,

H − h
 = h�,

N − n
 = n�,

imposed by the total number of particles and holes in the
system. The number of broken bonds does not exceed the
number of particles or holes, whichever is smaller. This must
be reflected in the upper limits in summations over s
 and s�.
Cases in which all sites in either the 
-section or environ-
ment are occupied must be treated separately. The result for
Y is

FIG. 1. Dividing the system into sections.
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Y�N,H,p,k� = �
n
=1

N−1

�
h
=1

H−1

�
s�=1

min
h�,n��

�
s
=1

min
h
,n
�

pSB
B�e
ika�h
+n
�

+ �
n�=1

N−1

�
s�=1

min
H,n��

ps�B�n�,H,s��eikan


+ �
n
=1

N−1

�
s
=1

min
H,n
�

ps
B�n
,H,s
�eika�H+n
�

+ �
s�=1

min
H,N�

ps��H − 1

s� − 1
	�N

s�
	 , �10�

where B
�B�n
 ,h
 ,s
� ,B��B�n� ,h� ,s��, and S=s
+s� in
the first term on the right-hand side. For the sake of the
development to follow it is more convenient to consider Y to
be a function of N and H rather than that of N and L=N
+H. The first contribution on the right-hand side of Eq. �10�,
the most general one, is due to all configurations with at least
one broken bond within each subsystem, implying that each
subsystem contains at least one particle and at least one hole.
The first site is always occupied. The second contribution is
due to all configurations with all sites of the 
-sections being
occupied, and the third contribution is due to those in which
all sites of the environments are fully occupied. Finally, the
last contribution corresponds to configurations with 
=0 �no

-sections�—here all configurations of the environment are
counted.

The sums �as given in Eq. �10�� are not easy to evaluate
and lead to a complicated result involving generalized hyper-
geometric functions. To get a simpler result an approxima-
tion is needed to decouple the subsystems and to enable sum-
ming over the variables of each of them separately. Then, the
variables for the individual subsystems can be let go to in-
finity, i.e., the restrictions due to the definite numbers of
either particles or holes �but not both at the same time� can
be relaxed.

Consider particular configuration of the system containing
N particles and H holes distributed among L sites of a one-
dimensional lattice with L sites forming clusters of particles
and holes. Clusters of particles—containing at least one
particle—are separated with clusters of holes �also contain-
ing at least one hole�. Broken bonds are placed at the edges
of particle clusters. Adding �injecting� an extra hole to a
cluster of holes does not change the number of broken bonds
�i.e., does not change the interaction energy� but leads to a
new configuration �see Fig. 2� of the system with unchanged

number of particles, unchanged number of broken bonds but
larger number of holes. Applying this repeatedly to all hole
clusters, one produces a wide range of configurations with
the same number of particles and broken bonds.

Injecting holes to the original system �while keeping the
number of particles fixed at N� implies that the number of
sites, L=H+N, also increases and the particle and the hole
densities are no longer fixed. To keep the particle density
N /L at a predetermined value �, a Lagrange multiplier r is
introduced and its value is fixed in such a way that the mean
value of the ratio H /N is equal to �1−�� /�. Of course, this is
the same as requesting that the mean number of holes is
equal to its actual value because N is fixed in the procedure.
This procedure is, in fact, very similar to that used in stan-
dard statistical mechanics when a transition is made from the
canonical to grand canonical ensemble: N and H are ana-
logues, respectively, of the fixed volume and the particle
number, p plays a role of temperature, and the Lagrange
multiplier r is an analogue of fugacity �and will be referred
to as such in what follows�. In the noninteracting system it is
proportional to the density of holes, i.e., r=1−� for p=1. We
note in passing that the opening of the system may alterna-
tively be accomplished by injecting particles into particle
clusters rather than holes into the hole clusters—the roles
played by particles and holes are then reversed. The results
of both approaches should be the same.

The result of this approach is that the actual denominator
Y, given in Eq. �10�, is replaced with its “grand canonical”

counterpart Ȳ which depends now on r rather than H,

Ȳ�N,r,p,k� = �
n
=1

N−1

�
s�=1

n�

�
s
=1

n


�
h�=s�



�
h
=s




pSrHB
B� cos�ka
�

+ �
n
=1

N−1

�
s�=1

n�

�
H=s�



pSrHB�n�,H,s��cos�kan
�

+ �
n
=1

N−1

�
s
=1

n


�
H=s




pSrHB�n
,H,s
�cos�ka�n
 + H��

+ �
s�=1

N

�
h�=s�



ps�rHB�N,h�,s�� . �11�

The trigonometric functions group conjugated terms of the
original sum in Eq. �10��. The sums in Eq. �11� are evaluated
in Appendix A. The result is

Ȳ = � pr

1 − r
+ 1	N pr��p − 1�r2 + 1�

��p − 1��eiak�1 − r� + 1�r + 1�2
. �12�

It depends on N, the fugacity r, the interaction parameter p,
and on ka.

The fugacity r must be determined by the condition fixing
the mean number of holes

H = r
�

�r
ln�

n=1

N

�
s=1

n

�
h=s



psrh�h − 1

s − 1
	�n

s
	� . �13�

Its evaluation is easy and in the thermodynamic limit we get

FIG. 2. Proper and improper hole injection procedure.
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pr

�1 − r���p − 1�r + 1�
=

H

N
=

1 − �

�
. �14�

Among two solutions of this equation for r as a function of p
and � the relevant one is for which 0�r�1. For the nonin-
teracting case �p=1� we have r=1−� and the r��� lines lie
above �below� the r=1−� line for all attractive �repulsive�
interactions.

B. Numerator

The evaluation of the numerator in Eq. �7� is, in general,
a problem similar to that discussed above for the denomina-
tor. One must evaluate

X = �
ij

� j
*Mjip

si�i. �15�

It can be dealt with exactly like it was in Ref. 13, as sum-
marized in what follows. First, matrix elements of the rate
matrix are

Mji�k� = Fji�k�wji for i � j, Mii = − �
�l�i

wli. �16�

Here, Fji�k�=1 for all transitions i→ j in which the hopping
particle is not the reference particle. When the reference par-
ticle jumps, then the distances of all remaining particles from
it change by +a or −a depending on the direction of the jump
and then Fij�k�=exp�±ika�. This phase factor arises when the
lattice Fourier transform of original rate equations is taken.
The rates wji are equal to zero for configurations i and j
differing in positions of more than one atom. Otherwise, they
are equal W ,� ,R, or T depending on the immediate environ-
ment of the hopping particle. Consequently, the summation
over �l�i is restricted to such configurations l which can be
reached from the configuration i by a hopping of a single
particle between nearest neighbor sites. Using Eq. �16� we
get the following expression for the numerator

X = �
ji

no rep

wjip
si�Fji�i − � j�2, �17�

where si is the number of broken bonds in the configuration
i. The detailed balance condition wijp

sj =wjip
si has been used

so the summation over ij accounts for both, i→ j and j→ i
transitions. To avoid double counting of transitions each pair
of configurations with wji�0 appears in the summation only
once, as indicated by “no rep” above �. It is easy to check
that �Fji�i−� j�2=sin2�ka� for all such pairs. The actual value
of wji depends only on the occupation state of the nearest
neighborhood of the jumping particle. It is, therefore, conve-
nient to introduce an active cell which consists of four sites,
a pair of sites between which the particle jumps plus one site
at each side of the pair. There are four types of such cells.
Each one corresponds to one of the transition rates wji
=W ,� ,R, and T and they are shown in Eq. �5�. The occupa-
tion pattern in the environment outside the active cell is ar-
bitrary. Each particular type of the active cell �i.e., each of
the four possible values of wij� brings into X in Eq. �17� a
contribution proportional to the number of possible configu-

rations of the environment outside the active cell. Its evalu-
ation is a very similar task to the one presented in the case of
the denominator. The evaluation is now even easier because
the active cell has always constant and finite length, 
=4.

Opening the system by injecting holes into the environ-
ment and introducing the fugacity r permits us to avoid com-
plications due to the restrictions imposed by a finite number
of particles and holes. Details are given in Appendix B. The

grand canonical counterpart X̄ of the numerator X is a sum of
contributions due to each type of particle jumps listed in Eq.
�5�:

X̄�N,r,p,k� = �X̄T + X̄� + X̄R + X̄W�sin2� ka

2
	 . �18�

With the detailed balance condition �= pR the contributions

X̄R and X̄� are identical. All contributions are listed in Eqs.
�B3�–�B5�. They depend on p ,N, and r and the latter must be
determined by solving Eq. �14�.

C. Diffusion coefficient

The collective diffusion coefficient is evaluated as a ka

→0 limit of X̄ /k2Ȳ �cf. Eq. �3��. Collecting the results for Ȳ

and all contributions to X̄ we get

D��� =
pr2��p − 1��r − 2�r − 1�2

��p − 1�r + 1�2��p − 1�r2 + 1�

� W + 2R
1 − r

r
+

T

p
�1 − r

r
	2�a2, �19�

with the � dependence entering through r obtained from Eq.
�14�. The term proportional to R accounts for both the R and
the � type transitions �thus a factor 2 in front of it�.

It is worthwhile to note here two points. �i� Equation �19�
exhibits the particle-hole symmetry, it is invariant upon the
simultaneous W↔T and �↔ �1−�� replacements �the latter
must be also made in Eq. �14� at the same time�. This means
that the same result would be obtained by injecting particles
rather than holes into the system. �ii� It is well known in
standard statistical mechanics that the results obtained within
canonical and grand canonical approaches are identical in the
thermodynamic limit of a large system. It is, thus, expected
that the expression for the diffusion coefficient obtained from

the ratio X̄ / Ȳ should be in this limit identical with the ex-
pression which would be obtained in this limit from the ratio
X /Y �a significantly more difficult procedure�. It is reassur-
ing to realize in this context that for the case without inter-
actions, i.e., for p=1, and T=R=�=W, Eq. �19� yields
D���=Wa2, i.e., the exact coverage independent collective
diffusion coefficient.

III. NUMERICAL RESULTS

We compare here the analytic results of our model with
the results of numerical Monte Carlo simulations. We have
used a simple Monte Carlo method for dynamics and a vari-
ant of the Boltzmann-Matano method to obtain the density
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dependence of the collective diffusion coefficient.16–18 The
initial steplike density profile was chosen with particles oc-
cupying all N lattice sites within a certain interval with all
the remaining sites being empty. The particles were free to
jump with rates determined according to the interaction
model. Jump rates selected were W=R ,�=T= pW. The re-
sults have been averaged over 106 MC steps and were
smoothed using running-on averages of different range de-
pending on the slope of the curve.

For the repulsive interactions the numerical results are
presented in Fig. 3. The low density limit of the normalized
diffusion coefficient is fixed, D��=0� /Wa2=1, and the high
density limit depends on the interaction parameter p. The
analytic results are plotted using Eq. �19�. We see that the
analytic results fit very well the numerical ones, and that for
this particular set of parameters they agree also quite well
with the analytic results of the earlier, simpler version of our
model13 �dashed line� for both strong �p=100, 10� and weak
�p=2� repulsive interactions. Note, however, that in contrast
to the latter, the present version of the model has no discon-
tinuity at �=0.5 for strongly repulsive interactions.

In Fig. 4 the MC simulation results are confronted with
the predictions of Eq. �19� for attractive interactions. The fit
to the simulation data is quite good except in the immediate
vicinity of �=0.5. It can be either due to the approximations
used in the theory or due to difficulties with the analysis of
the computer simulation data. The one-dimensional system
does not change its ordering through the phase transition but
it has a tendency to cluster particles into strongly and weakly
occupied islands. Systems that cluster are very difficult to
analyze numerically and, in particular, it is difficult in this
case to extract accurately values of the diffusion coefficient
from the simulation data. In this situation it is surprising that
the agreement between our simple analytic formula and the
results of the MC simulations of diffusion in such inhomo-
geneous state of the system is as good as observed in Fig. 4.

IV. ACTIVATION ENERGY AND ATTEMPT
FREQUENCY

In most of the experimental studies the following param-
etrization of diffusion coefficient is introduced:

D��,�� = �a2e−�EA���, �20�

containing parameters which can be fit to parameters mea-
sured in other experiments. Here, EA is referred to as an
activation energy and � is known as an attempt frequency.
The parametrization written above extracts temperature de-
pendence explicitly. The temperature in our calculations
enters via rates that we use in the model. The equilibrium
weight p=exp��J� gives p�1 for low temperature systems
with repulsion �J�0� and p�1 for low temperature systems
with attraction �J	0�. Temperature decides also about dy-
namical processes in the system, through W=W0 exp�−�V�,
and relations between other rates. W0 is a temperature and
interaction independent attempt frequency for an isolated
particle, and V is an interaction independent barrier height
between the adsorption sites. We extract the interaction de-
pendent part of the diffusion coefficient by considering the
ratio

D���
D�0�

=
D���
Wa2 =

�

W0
e−��EA���−V�, �21�

and analyzing its density dependence for the interacting
system.

The activation energy is a parameter that provides an in-
formation on the effective potential energy of a particle dur-
ing the evolution of the system. Its density-dependent part
EA���−V depends on the interaction constant J in the system
Hamiltonian. The prefactor ���� is the effective interaction-
dependent frequency with which a particle tries to jump out
of its potential well. In other words, EA is modified by inter-
action change in the energy barrier encountered by a particle
leaving an “average” adsorption site and � accounts for the
“average” dynamic properties of particles, also modified by
the interactions. Of course, in real situations EA��� and ����
depend on temperature so Eq. �20� is only an approximate
parametrization of the temperature dependence. It is possible
to extract both, the attempt frequency ���� and the activation
energy EA���−V from the analytic expression for D���,
given in Eq. �19�. Changing p keeping J fixed means varying
the temperature, for the repulsive interactions’ higher tem-
peratures correspond to smaller p’s �always larger than 1�

FIG. 3. Density dependence of the collective diffusion coeffi-
cient for repulsive particle-particle interactions. Points, MC simula-
tion results solid lines, theoretical results from Eq. �19�; dashed
lines, analytic results from Ref. 13. The interaction parameters
�counting from top to bottom� are p=100, 10, 2.

FIG. 4. The same as in Fig. 3 but for the attractive interactions.
Parameters p=0.5, 0.3, 0.1, counting from top to bottom.
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while for the attractive ones higher temperatures correspond
to larger p’s �always smaller than 1�. Results, for several
temperatures �i.e., p’s�, are plotted in Figs. 5 and 6 for the
repulsive interactions, and in Figs. 7 and 8 for the attractive
ones.

It can be seen that both variables EA as well as � depend
on temperature. The character of their density dependence is
qualitatively similar at all temperatures. Upon increasing p,
i.e., lowering the temperature, this dependence approaches
the limit corresponding to the results of the simplified model
of Ref. 13. In this limit the diffusion coefficient is equal
to D���=W0a2e−�V / �1−2��2 for �	0.5 and to D���
=W0a2e−��V−J� /�2 for ��0.5. In the simplified model the
interaction induced modification of the activation energy is
equal to 0 for densities below �=0.5 and to −J above it
�dashed line in Fig. 5�. The effective attempt frequency is in
this limiting case proportional to �1−2��−2 for �	0.5 and to
�−2 for ��0.5 �dashed line in Fig. 6�. In the present model

both parameters reveal an interesting behavior around �
=0.5 for repulsive interactions. The activation energy de-
creases rapidly around �=0.5. This is not surprising because
the limiting case approximation predicts it too. More inter-
esting is a small dip observed immediately above �=0.5.
Here the activation energy is lowered by more than
J—coming from single interaction and this feature is absent
from the limiting case approximation.

The attempt frequency approaches a “bare” value W0 at
�=0.5. Even more interesting behavior occurs to the left and
to the right of this point. A clear maximum is observed for
densities around �=0.4 and somewhat less pronounced
maximum in the vicinity of �=0.6. As stated before, the
attempt frequency accounts for the dynamical properties of
the system. At different densities the number of microscopic
configurations that are visited at a given temperature is dif-
ferent. It is relatively low at �=0.5 but rises considerably for
densities higher or lower than �=0.5. The number of pos-
sible deconstructions increases away from �=0.5, which is
reflected in a larger attempt frequency. Thus the attempt fre-
quency contains information about the size of space of effec-
tively accessible configurations.

FIG. 5. Interaction-induced correction to the activation energy
as a function of the particle density for repulsive interactions for
W=R and �=T. Counting from the topmost curve down, p
=100, p=10, and p=2, corresponding to the lowest, intermediate,
and the highest temperature, respectively. Dashed line, the result
from the simplified version of the model in Ref. 13.

FIG. 6. Effective attempt frequency as a function of the particle
density for the repulsive interactions. The parameters p are the same
as in Fig. 5. The lowest temperature �p=100� corresponds to the
topmost curve. Dashed line, the result from a simplified version of
the model in Ref. 13.

FIG. 7. The same as in Fig. 5 but for the attractive interactions
for W=R and �=T. Counting from the topmost curve down, p
=0.1, 0.3, and 0.5 corresponding to the highest, intermediate, and
the lowest temperature, respectively.

FIG. 8. The same as in Fig. 6 but for the attractive interactions
for W=R and �=T. The parameters p are the same as in Fig. 7. The
lowest temperature �p=0.1� corresponds to the topmost curve.
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The density dependence of the activation energy and of
the attempt frequency for the attractive interactions is plotted
in Figs. 7 and 8. We see that with lowering temperature the
activation energy �EA−V� / �J� increases.

The attempt frequency probes the size of the effectively
accessible portion of the configuration phase space and,
again, shows regions where the system has the largest free-
dom. The maxima of the attempt frequency appear close to
�=0.5 for the repulsive interactions �Fig. 6� but for the at-
tractive interactions �Fig. 8� they occur closer to �=0 and
�=1. This difference reflects a difference in the basic prop-
erties of the phase space available to the system’s different
kinds of interactions. Although in one dimension no phase
transition occurs, positions of the observed maxima occur,
however, at positions at which phase transitions in similar
two-dimensional �2D� systems take place, a coverage inter-
val over which an ordered phase in 2D occurs is wider for
the repulsive interactions than it is for the attractive ones.

V. DIFFUSION FAR FROM EQUILIBRIUM

Using the approach presented in this work we may at-
tempt to estimate the decay rate of long wavelength density
fluctuations for the system far from equilibrium. This is rel-
evant when the system is prepared in an initial state that
significantly differs from the equilibrium state at the actual
temperature at which the temporal evolution occurs. One
can, for example, equilibrate the system at a high tempera-
ture Th and then suddenly quench it substantially down to Tq
and follow then the approach towards equilibrium. We may
identify the rate of decay towards equilibrium, 1/�, of fluc-
tuations corresponding to the wave vector k over a short time
window around t with an “expectation value” of the rate
matrix Mji in the corresponding to k state ui�t� of the system
at t,

−
1

�
=

�i,j
ũj�t�Mjiui�t�

�i
ũi�t�ui�t�

, �22�

In particular, evaluating 1/� at t=0 �i.e., using the initial
state of the system represented by ui�0�� we get an estimate
of the initial rate of decay. If the system is prepared in such
a way that the rate of decay is proportional to k2,

�−1 = D̃a2k2 �23�

then the parameter D̃ may be understood as the far-from-
equilibrium chemical diffusion coefficient. Strictly speaking,
only very special initial states of the system result in the

initial decay rate with the property �23� so, formally, D̃ is not
as universal quantity describing properties of the system as
the standard diffusion coefficient is. The latter describes the
final approach to equilibrium after all transients have already
died out and, consequently, it does not depend on the initial
state of the system.

If the system is prepared at a sufficiently high temperature
then, at t=0 all microstates of the system are equally likely,
i.e., p=1 and the appropriate vector ui�0� is equal to �i�k�

given in Eq. �4�. The resulting rate of decay was in fact
already evaluated in a different context in Ref. 13. The result

for D̃ is

D̃ = W + 2�� − R − W���1 − �� + �T − W��2, �24�

where W ,T ,R, and � are the hopping rates appropriate to the
“quenched” temperature Tq at which the initial time evolu-
tion is followed. The activation energy parameter corre-

sponding to D̃ �whatever it physically means� is in Fig. 9
compared with the equilibrium activation energy for strongly
repulsive interactions and the temperature corresponding to
p=100. We see that for �	0.5 the equilibrium activation
energy is about two orders of magnitude higher than that
corresponding to the far from equilibrium diffusion. This is
reminiscent of the experimentally observed relation19 be-
tween the activation energies for ordered �equilibrium� and
disordered �far form equilibrium� systems. Note that slightly
above �=0.5 the equilibrium activation energy drops below
the far from equilibrium one but as � approaches 1 both
activation energies become the same.

VI. SUMMARY

We have applied and generalized in this work the re-
cently developed13 approach to chemical diffusion in one-
dimensional lattice gas system of interacting particles to ac-
count for both repulsive and attractive interactions of arbi-
trary magnitude. Analytical results for the density �coverage�
dependence of the collective diffusion coefficient agree very
well with the results of computer simulations.

Unphysical discontinuity of the diffusion coefficient at �
=0.5, predicted for strongly repulsive interactions in Ref. 13,
is now removed and a nontrivial dependence of both the
activation energy and the diffusion pre-exponential factor
�attempt frequency� is obtained. It is shown that in this case
the results of Ref. 13 correspond to the zero temperature
limit of the presently obtained results.

For strongly repulsive interactions and/or at low tempera-
tures the activation energy remains approximately constant

FIG. 9. Interaction-induced correction to the activation energy
as a function of the particle density for repulsive interactions for
W=R ,�=T, and p=100 for the far from equilibrium �continuous
line�, and for the equilibrium �dashed line� diffusion coefficient.
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with increasing density, assuming at moderate coverages a
value appropriate for the system without interactions, but it
drops rapidly down by more than the particle-particle inter-
action energy when one-half of the lattice sites get occupied
�i.e., at 1 /2 coverage�. It gradually approaches the value ex-
pected for diffusion of independent holes with further in-
crease of density. The drop is less rapid at higher tempera-
tures and/or for weaker repulsive interactions but its
magnitude is always larger than the interaction energy. Pro-
nounced maxima of the attempt frequency at densities
slightly below and slightly above 1/2 coverage occur when
the number of accessible microscopic configurations of the
system is the largest. For the attractive interactions the den-
sity dependence is smoother than for repulsion but the inter-
pretation remains essentially the same.

An attempt was also made to parametrize collective dif-
fusion for systems far from thermal equilibrium. For systems
prepared at high temperatures and subsequently quenched,
the activation energy of the initial �far from equilibrium�
diffusion coefficient is, for repulsive interactions and low
coverages, much lower than that of the equilibrium coeffi-
cient, with both merging each other for ��0.5.

Our approach is akin to the variational approach in stan-
dard quantum mechanics; the diffusive eigenvalue is ap-
proximated by an “expectation value” of the rate matrix, us-
ing a variational guess for the appropriate eigenvector. In
contrast to quantum mechanics we do not have here a benefit
of either the variational principle �assuring that the approxi-
mated eigenvalue is not smaller than its true value� or of the
intuitions which we usually have concerning the shape of the
ground state wave functions. In this situation the variational
choice in Eq. �4� for the left diffusive eigenvector of the rate
matrix is the simplest but not necessarily the best choice.
Being the exact eigenvector of the rate matrix for the lattice
gas without interactions �except for hard core repulsion�, it
necessarily has all the properties required for the eigenvalue
to be proportional to k2 in the long wavelength limit. The
matter of an optimal variational choice of the eigenvector
that would partially take into account the actual interactions
requires further investigation of the formal properties of the
diffusive eigenvectors. These properties would serve then as
a guide in searches for more appropriate variational candi-
dates. In fact, in our own investigations of diffusion in the
interacting lattice gas in two dimensions with strong nearest
neighbor interactions15 we have considered a variational
choice of the diffusive eigenvector going beyond simple 2D
generalization of Eq. �4�. The choice was dictated by consid-
ering several special and limiting cases.

Only a lattice gas in one dimension is a subject of this
work. In a separate publication15 results of our investigations
of collective diffusion in a two-dimensional lattice gas with
strong repulsive interactions will be presented for the density
range within which the gas is organized into a c�2�2� struc-
tural phase. Similarly as in Ref. 13 for 1D the diffusion co-
efficient experiences a discontinuity at �=0.5. Similarly as in
Ref. 13, it is an artifact caused by limiting considerations to
relatively few types of the most likely configurations acces-
sible to the system. Removing the discontinuities as well as
generalization to cases with arbitrary interactions requires,
similarly as in this work, considering much broader class of

configurations and using the grand canonical approximation
scheme. Work in this direction is in progress.
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APPENDIX A

We provide here a few guidelines through calculations
leading from Eq. �11� to Eq. �12�. The use of two identities20

�
x=y



rx−y�x

y
	 =

�1 − r�−y

1 − r
, �A1�

�
y=0

x

ry�x

y
	 = �r + 1�x, �A2�

is repeatedly made in it.
It is important to notice that, while h
 and h� vary inde-

pendently of each other, n
 and n� are not mutually indepen-
dent because the system has a fixed number of particles n


+n�. Therefore we sum over numbers of holes first �using
Eq. �A1��. The sum over numbers of broken bonds �with help
of Eq. �A2�� and over particles is relatively easy once the
summation over h
 and h� is done. Let us take the first part of
the expression �11�. Two inner sums are independent of each
other—they lead to

Ȳ1�s
,s�,n
� =
�pr�s
+s�

�1 − r�s�
� e−iak�n
+s
�

�1 − e−iakr�s

+

eiak�n
+s
�

�1 − eiakr�s

	 ,

�A3�

where the subscript 1 refers to the first term of Eq. �11�. The
other two sums result in

Ȳ1�n
� = � pr

1 − r
+ 1	N−n


− 1��e−iakn
� pr

eiak − r
+ 1	n


+ eiakn
�p� 1

1 − eikar
− 1	 + 1�n


− 1� − e−iakn
� ,

�A4�

which summed over n
 gives

FIG. 10. Special cases in the denominator in Eqs. �10� and �11�.
From left to right, Cases 2, 3, and 4.
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Ȳ1 = � pr

1 − r
+ 1	N pr�1 − r���p − 1�r + 1�

��1 − r� − e−iak��p − 1�r + 1��2

� � �p2r2�r − 2� − �2 − 3p�r�r − 1�2�
��p − 1�r�1 − r� + e−iak��p − 1�r + 1��2

−
��p − 1�r + 1�22 cos�ak�

��p − 1�r�1 − r� + e−iak��p − 1�r + 1��2	
+

pr2�p − 2� + 2 cos�ak�
�e−iak�p − 1�r + �r + 1� − eiak�2

. �A5�

One must perform similar summations for every remaining
three special case terms in Eq. �11� as described below. In
Fig. 1 a typical configuration of the system is shown. It con-
sists of a 
-section and an environment, and corresponds to
terms in the innermost sums in the first term of the denomi-
nator �10�. Diagrams corresponding to three other cases are
shown in Fig. 10.

Case 2 corresponds to a situation when the entire

-section is completely filled with particles so all broken
bonds are present in the environment. Holes may thus be
injected only outside the 
-section �compare it with Fig. 2�
and do not contribute to the length 
. The result is

Ȳ2 = 1 − � pr

1 − r
+ 1	N �1 − r� − ��p − 1�r + 1�2 cos�ak�

��1 − r� − e−iak��p − 1�r + 1��2
.

�A6�

Case 3 is exactly opposite to Case 2—the environment is
filled with particles and has no holes, which can only be
injected between broken bonds within the 
-section. Note
that the number of particles in the system is fixed so the
length of the environment is restricted by the total number of
particles minus one. We get

Ȳ3 = −
pr2�p − 2� + 2 cos�ak�

�e−iakr�p − 1� + �r + 1� − eiak�2
. �A7�

Case 4 is the simplest one. Here, 
-section is reduced to
one particle only. This case appears also in the calculation of
the r parameter. We get

Ȳ4 = � pr

1 − r
+ 1	N

− 1. �A8�

Adding Ȳ1 through Ȳ4 results in the expression for Y
given in Eq. �12�.

APPENDIX B

In the numerator there are four possible types of active
cells corresponding to four jump types. Generally speaking
for each of them we repeat a procedure which was used in
Appendix A for the denominator, but keep s
 ,n
, and h

fixed at their values appropriate to a given cell type. The
entire numerator is a sum of contributions from different
types of active cells X= X̄T+ X̄W+ X̄�+ X̄R.

The T-type active cell has three particles and one hole,
and one broken bond is located within the cell. Since the 

section is fixed �and equal to the active cell�, the summation
runs over the environment configurations only. One possibil-
ity is a typical environment with a certain number of hole
clusters to which additional holes may be injected �as pic-
tured in Fig. 2�. For h��0 in the environment we get

X̄T
h� = Tpr� pr

1 − r
+ 1	N−2

− 1� , �B1�

where the superscript h� means that the result �B1� is valid
for the case with h��0 holes in the environment. The other
case occurs when no hole is present in the environment �note
that it is still a reasonable regime since one hole is present
within the active cell�. In such a case we get

X̄T
0 = Tpr . �B2�

Adding both results leads to the following T-type active cell
contribution to the numerator

X̄T = Tpr� pr

1 − r
+ 1	N−2

. �B3�

For W-type active cell we get a similar result, only the num-
ber of holes and particles in the active cell is now different,

X̄W = W
p2r3

�1 − p��r�p − 1� + 1�� pr

1 − r
+ 1	N−1

. �B4�

In contrast to the former two, the �- and R-type active cell
cannot be easily written as a sum of a 
-section and an en-
vironment. The basic cell in both cases has particle at one
end and hole at the other, whereas 
-section has particles at
both ends. Instead we can write the sum of all configurations
of environment for �-type cell as a difference of configura-
tion number for the appropriate three particle 
-section and
four particle 
-section. Due to the detailed balance condition,
we can calculate only one of the �-type contributions and get
the other one using the substitution �= pR. We get

X̄� � X̄R = R
�r − 1�r2p2

��p − 1�r + 1�2� pr

1 − r
+ 1	N−1

. �B5�
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