
Author’s Accepted Manuscript

Fast data preprocessing with Graphics Processing
Units for inverse problem solving in light-scattering
measurements

G. Derkachov, T. Jakubczyk, D. Jakubczyk, J.
Archer, M. Woźniak

PII: S0022-4073(16)30427-7
DOI: http://dx.doi.org/10.1016/j.jqsrt.2017.01.008
Reference: JQSRT5555

To appear in: Journal of Quantitative Spectroscopy and Radiative Transfer

Received date: 19 July 2016
Revised date: 5 January 2017
Accepted date: 6 January 2017

Cite this article as: G. Derkachov, T. Jakubczyk, D. Jakubczyk, J. Archer and M.
Woźniak, Fast data preprocessing with Graphics Processing Units for inverse
problem solving in light-scattering measurements, Journal of Quantitative
Spectroscopy and Radiative Transfer,
http://dx.doi.org/10.1016/j.jqsrt.2017.01.008

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/jqsrt

http://www.elsevier.com/locate/jqsrt
http://dx.doi.org/10.1016/j.jqsrt.2017.01.008
http://dx.doi.org/10.1016/j.jqsrt.2017.01.008

Fast data preprocessing with Graphics Processing Units
for inverse problem solving in light-scattering

measurements.

G. Derkachova, T. Jakubczykb, D. Jakubczyka,∗, J. Archera, M. Woźniaka

aInstitute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw,
Poland

bInstitute of Control and Computation Engineering, Warsaw University of Technology,
ul. Nowowiejska 15/19, PL-00665 Warsaw, Poland

Abstract

Utilising Compute Unified Device Architecture (CUDA) platform for Graphics

Processing Units (GPUs) enables significant reduction of computation time at a

moderate cost, by means of parallel computing. In the paper [Jakubczyk et al.,

Opto-Electron. Rev., 2016] we reported using GPU for Mie scattering inverse

problem solving (up to 800-fold speed-up). Here we report the development of

two subroutines utilising GPU at data preprocessing stages for the inversion pro-

cedure: (i) A subroutine, based on ray tracing, for finding spherical aberration

correction function. (ii) A subroutine performing the conversion of an image to a

1D distribution of light intensity versus azimuth angle (i.e. scattering diagram),

fed from a movie-reading CPU subroutine running in parallel. All subroutines

are incorporated in PikeReader application, which we make available on GitHub

repository. PikeReader returns a sequence of intensity distributions versus a com-

mon azimuth angle vector, corresponding to the recorded movie. We obtained

∗jakub@ifpan.edu.pl

Preprint submitted to Journal of Quantitative Spectroscopy and Radiative TransferJanuary 12, 2017

an overall ∼ 400-fold speed-up of calculations at data preprocessing stages using

CUDA codes running on GPU in comparison to single thread MATLAB-only code

running on CPU.

Keywords: optical particle characterisation, numerical aberration correction,

image processing, Compute Unified Device Architecture (CUDA), Graphics

Processing Unit (GPU)

1. Introduction

Interferometric techniques, which are used for optical particle characterisation

require solving an inverse problem ([1]). Most methodological efforts are aimed

at performing the inversion procedure with high accuracy and in short time (see

e.g.: [2, 3, 4, 5, 6, 7]). In the work [8] we described a successful implementation

of inversion algorithm (Mie Scattering Lookup Table Method) on graphics pro-

cessing units (GPUs; see e.g. [9, 10]), making use of parallel computing (see e.g.

[11, 12]).

In this work we describe GPU implementation of algorithms for data prepro-

cessing, a stage scarcely described in literature. Since the amount of scattering

data requiring processing at this stage may easily become huge, it is a common

practice to pre-reduce it either by using a linear camera or by selecting a narrow

region of interest in the field of view. In case of imperfect imaging, this may

slightly compromise the final inversion accuracy. Since our further investigations

depend on high particle characterisation accuracy, we try to make the most of the

data in the field of view, which results in extensive computations.

We perform data preprocessing in two steps: (i) finding the aberration cor-

rection function, common for all recorded images, as well as the droplet position

2

versus the centre of the trap, and (ii) conversion of all images in a movie to a

sequence of 1D distributions of light intensity versus a common 700-element az-

imuth angle vector (i.e. scattering diagrams). The second step includes pixel

decoding, demosaicing and aberration correction, as well as pixel sorting versus

azimuth angle, walking average of light intensity and reduction to 700 points.

Both subroutines use GPU capabilities, while the image-conversion subroutine

is fed from a movie-reading subroutine running in parallel on CPU. The overall

speed-up of calculations was ∼ 400-fold in comparison to single-thread MATLAB

code. The application comprising both subroutines is called PikeReader and can

be freely downloaded from GitHub repository [13].

2. Motivation and design of the optical system for observation of Mie scat-

tering images

Our primary research interest focuses on evaporation dynamics of single, free,

micrometre-sized droplets. Single droplets ranging from ∼ 25 µm to ∼ 500 nm

in radius can be levitated in our electrodynamic trap (see e.g. [14]). In order

to infer the details of the thermodynamic process (see e.g. [15, 16, 17]) the fine

details of the temporal evolution of droplet radius are analysed. As a primary

tool for measuring the droplet radius, we use elastic (static) light scattering with

Mie Scattering Lookup Table Method [14]. For droplets of pure liquids of few

micrometres radius we reach an accuracy of ±10 nm.

The observation of light scattered by a micrometre-sized droplet, confined in a

centimetre sized trap (figure 1: top), enclosed in a decimetre sized chamber (figure

1: middle) requires a dedicated optical system. Since a wide-angle observation is

highly preferable in view of the inversion procedure accuracy, a non-paraxial op-

3

tical system is required (see figure 2). Usually, minimising aberrations in such

a system requires a complex lens configuration or/and aspheric lenses. Avail-

able good quality objectives are comparatively large, which, in turn, scales up

the whole setup and the chamber in particular. To avoid this and having in mind

temperature and atmosphere composition gradient issues associated with larger

vessels, we decided to use two simple lenses (figures 1 and 2) and to correct

aberrations at the post-processing stage (see next section). The focal point of the

entrance lens coincides with the droplet and there is a confocal aperture after the

exit lens. The polarisers are half-way between the lenses. Since they contribute to

the optical distance between the lenses, it is accounted for in the calculations.

Previously, in 4 side-port trap/chamber system we used symmetrical bi-convex

lenses of 18.705 mm curvature radius and 12.6 mm diameter. The distance be-

tween apexes of the lenses was 42.57 mm. There was an additional (calibrating)

circular aperture between the viewing port of the trap and the lens. The body of

the objective was made of plexiglass with 16 mm entrance outer diameter.

The newly developed setup has 8 optical side-ports (see figure 1), which con-

stricts the lens system even further. In order to retain a wide field of view, we

got rid of the circular entrance aperture and put the entrance lens closer to the

droplet (compare figure 2). This, however, resulted in larger optical aberrations.

To minimise this, plano-convex lenses with apexes pointing inward were used.

The distance between apexes was 37.4 mm. The lenses were anti-reflection coated

and their curvature radius and diameter were 10.3 mm and 12.4 mm respectively.

The body of the objective was made of aluminum, which allowed reduction of the

entrance outer diameter to 13 mm.

4

in-focus
microscope port

objective @ 90°

objective
@ rainbow-angle

for blue beam

blue
laser beam

water
jacket

red
laser beam

confocal
diaphragm

water
inlet

water
outlet

electric heater
connector

confocal
diaphragm

electrodynamic
trap (cutaway drawing)

Figure 1: Middle: partially assembled new version of climatic chamber with main optical system

in place. Top: cutaway drawing of the electrodynamic trap. The location of the trap in the chamber

indicated with (red) solid-and-dashed arrow. Top-right corner: an assembled optical system for

Mie scattering imaging.

3. Aberration correction in post-processing

It is well known that the information present in an image suffering aberra-

tions is not lost. It can fully be retrieved in numerical post-processing, as long as

the parameters of the lens system are known. In our experiments we record the

temporal evolution of scattering patterns with aberration in the form of movies.

The aberration correction procedure consists of two main steps: (i) finding the

angle and intensity correction with analytical or numerical ray tracing, and (ii)

applying the correction to each image in a movie. The intensity distribution gen-

erated by the transmitted rays is proportional to the spatial transmittance function

of the lens system. Simultaneously, it provides a pixel-to-scattering angle map-

ping. Then, the raw scattering images must be divided by this distribution and

5

each CCD pixel must be assigned the scattering angle value.

In our previous works, in order to assign the correct scattering angle value

(both: azimuth and elevation) to each pixel, analytical ray tracing formulas were

used. To simplify the problem, a circular entrance aperture was introduced be-

tween the trap port and the first lens. Then, under the assumption of axial symme-

try of the droplet-lens system, the formulas involved only simple planar trigonom-

etry. Neither the modification of light intensity distribution due to aberration was

accounted for, nor Fresnel coefficients were applied at ray refractions. However,

since the scattered light, being a modulated spherical wave, was observed with a

flat sensor, the cosine law and the inverse-square law of illumination were applied

for each sensor pixel. The factor of (cosθ)/r2 multiplying the corrected image

intensity was introduced, where θ and r are respectively the incidence angle and

the length of the ray from the droplet to the pixel. Since, according to Mie theory,

the scattered light intensity changes insignificantly for the elevation angles used

(±5◦), all the sensor pixels can be ordered versus azimuth angle assigned to them

only. Accordingly, the procedure yielded the azimuth angle correction and a suf-

ficient intensity correction function. These were applied to each scattering image,

yielding scattering diagrams for inversion procedure. In order to correct the chro-

matic aberration, the procedure was repeated for both used light wavelengths. The

eventual displacement of the droplet was accounted once for the whole movie in

the inversion procedure.

In the presented work, we aimed for two major improvements of the aberra-

tion correction algorithm: (i) the relaxation of the axial symmetry assumption to

account for a possible off-centre position of the droplet, as well as for the limita-

tions of the trap/chamber mechanical accuracy and (ii) accounting not only for the

6

angular distortion but also for the light intensity modification intrinsic to spherical

aberration. Thus, assigning the true scattering angle value and intensity correction

to each pixel required an exact ray tracing in 3D (figure 2). Here we outline the

basic steps of the algorithm.

3.1. Finding of aberration correction function

3.1.1. The ray tracing algorithm concept

Since in our experiment the size of the droplet is negligible in comparison to

the size of the lens, the droplet can be considered as a point light source placed at

a given point. The origin of a coordinate system is set at the centre of the trap and

the droplet may be located off-centre. Rays are generated from the droplet position

evenly in the sense of the sphere surface density, over the azimuth and elevation

angle. The angular ranges are slightly larger than the ones defined by the viewing

port of the trap. Ray tracing is performed in a standard manner and rays missing

the lenses or blocked by the viewing port or the confocal aperture are eliminated.

For each refracting surface we find the point of intersection of the ray with the lens

surface by solving a line-refracting surface set of equations. Then we apply Snell’s

law in vector form to find the refracted ray direction. For each ray, with unitary

initial intensity, a unique azimuth-elevation angle pair is attributed. The azimuth

and elevation is averaged over all rays hitting a pixel. The rays hitting each pixel

are counted and their final intensities are summed. The number of generated rays

is much larger than the number of pixels in order to achieve smooth intensity

distribution. The re-distribution of transmitted light intensity is accounted for in

two ways: (i) The intensity of each ray at each refracting surface is modified by

the (cosθ)/r2 factor, without considering Fresnel coefficients. Since the lenses

were anti-reflection coated (∼ 1% reflection), this simple method was found quite

7

sufficient. (ii) An average intensity is calculated for each pixel. It depends on both

the modified intensity of each ray as well as on the number of rays hitting the pixel,

which is modified due to aberration. Depending on the CCD sensor type, some

Y [mm]

X [mm]

8

6

4

2

0

-2
-8

-4

-6

-4

-10 0 -6

-2

10 20

0

30

Z
 [m

m
]

40

2

50 -860

4

70 80 90

6

8

trap viewing port
confocal diaphragm

CCD

2nd lens
1st lens

droplet
position

trap
centre

light
rays

polarisers

Figure 2: Non-paraxial ray tracing through the optical elements of the Mie scattering imaging

system. The x-axis scale is ∼ 10 times compressed versus y- and z-axis. In consequence, the

curvature of the viewing port is not visible. The CCD cover glass is not shown.

additional steps in the ray tracing algorithm may have to be implemented. The

CCD cover glass does not modify the angular light distribution and can usually be

neglected. However, the angular dependence of CCD quantum efficiency must be

considered.

3.1.2. Finding the position of droplet and detector

In order to find the aberration correction function, the real position of the

droplet versus the trap centre and the position of the CCD sensor must be found

first. The true position of the droplet is also necessary for further data prepro-

8

cessing. The scattered light missing the viewing port is blocked and the shadow

defined by the port edges is casted onto the sensor. A theoretical projection of the

edges onto the CCD, obtained with ray tracing, is added to the displayed image

and used as a viewfinder (see figure 3). The real position of the droplet and the

CCD can be found by adjusting their position in the ray tracing subroutine and fit-

ting the viewfinder to the real shadow. Summing (all) frames, blurs the scattering

pattern and raises the visibility of the shadow. Additionally there is a possibility

of projecting virtual interference fringes and comparing them with the fringes in

freely selected frames. The ray tracing does not consider the diffraction at the

viewing port edges, however the diffraction is usually plainly seen for summed

frames and the expected position of the edges can be well estimated. In order

to draw the viewfinder, less than 80 rays are necessary. After changing the ray

tracing parameters, it can be redrawn instantly. Significantly more time (several

minutes) is consumed by manual droplet and CCD position adjustment.

3.1.3. Speed and accuracy

The new aberration correction subroutine yielded very promising results. It

was flexible in the sense of the lens system and apart from finding the aberration

correction function it allowed determining the droplet position already at the data

preprocessing stage. Unfortunately, when coded in MATLAB, it turned out to be

very time consuming (∼ 2 hours for 9× 106 rays). However, it can easily be

noticed that ray tracing is ideal for parallel computing, as different calculation

threads hardly interact. Based on a previous work [8], we decided to make use of

GPU and rewrote the subroutine accordingly on CUDA platform. The code was

also generally optimised in the process. The project turned out very successful by

making the correction of the optical aberrations nearly instantaneous (< 0.3 s for

9

9×106 rays @ GTX 580 and < 0.8 s for 625×106 rays @ GTX Titan Black).

The accuracy of new data preprocessing subroutines can hardly be estimated

directly, since the previous subroutines corresponded to different hardware: trap,

optical system and camera. However, it could be estimated on the basis of achieved

accuracies of droplet radius found with the same inversion subroutine. Since there

was no visible gain in the accuracy of radius finding (±10 nm for a several micron-

sized droplet [14]), we conclude that the accuracy of the new preprocessing sub-

routines compared to the previous one is the same. The new subroutines running

on GPU use single precision floating point arithmetics. However, the accuracy

can be increased by using double precision at the expense of speed.

3.1.4. Implementation of ray tracing algorithm in CUDA

The ray tracing algorithm was implemented as a MEX subroutine, called

RayTracingCUDA (see RayTracingCUDA subroutine in figure 4). MEX subrou-

tine is generally versatile and easy for using with our data processing software

written in MATLAB (figure 4). In PikeReader application it is invoked with Find

Image Distortion button. However, we would like to underline that the sub-

routine is self-standing. Ray tracing is an indispensable tool for designing optical

systems and for computer generated graphics. The structure of the subroutine is

as follows:

• Ray tracing data is loaded from MATLAB memory into GPU memory.

• The ray tracing subroutine, also called - the ray tracing kernel, described

above, is executed on GPU in massively multiple threads (512 for GTX 580).

When one set of threads is executed, the next set is preloaded. Each thread

has a number defining a single ray. For best performance, and in order to

10

Figure 3: The Graphics User Interface of PikeReader application. Raw, uncorrected image is

displayed. The buttons invoking Find I(Theta,t) and Find Image Distortion subroutines

are emphasised with red lettering.

avoid collisions, different threads shouldn’t write to the same memory ad-

dress.

• In order to find the values of cells (pixels) of the intensity-correction array,

adding values from different threads is necessary. The result of unsynchro-

nised additions from simultaneous threads into a variable at a single ad-

dress may be indeterministic. To avoid indeterministic results, the so called

atomic addition is used. The atomic function is a special subroutine which

11

guarantees undivided access to a variable at a specific address. In our case,

due to the nature of the problem, the synchronisation operation isn’t very

costly, since only few threads need to access the same cell of the image

array.

• Finally, the results are copied back from GPU memory into MATLAB mem-

ory.

3.2. Movie processing

Movie processing is done frame by frame. For each frame, first the (averaged)

background for each colour is subtracted and the correction function is applied.

Then, the scattered light intensity (for both colours/polarisations) is smoothed ver-

sus azimuthal angles, which entails also averaging over elevation angles. Finally,

the angular intensity distribution is scaled to a 700-element vector. It corresponds

to a 700-element azimuth angle vector, which is common for all frames. The re-

sults of the preprocessing for the whole movie are stored in two arrays named Ipp

and Iss.

In our previous code, movie processing was done with standard MATLAB

functions and was also rather time-consuming - ∼ 1 hour per gigabyte of movie

- which made it several hours for an average movie. We decided to speed it up

by writing our own functions in C/C++ and using parallelization. All compute-

intensive calculations were written in CUDA C/C++. C++ code was compiled to

MATLAB MEX-file (IntensCalc.mexw64), to interface with the rest of PikeReader

MATLAB application. The movie-processing subroutine is named IntensCalc

and is the main part of PikeReader application. It is invoked with Find I(Theta,t)

button in the PikeReader GUI. Movie-processing subroutine rewritten in CUDA

12

C++ is significantly faster then its predecessor and reduces computation time from

hours to seconds. The speed-up was estimated to be ∼ 400-fold.

3.2.1. Implementation of movie processing algorithm

A very low execution time of IntensCalc was achieved by identifying two

major bottlenecks. (i) Reading movie from a hard drive turned out to be the first

major bottleneck. Storage device access times can not be directly surpassed pro-

grammatically, so it is optimal to read from the hard drive continuously. Accord-

ingly, we decided to create a separate, hard drive-reading-only thread, running in

parallel on CPU. (ii) Secondly, we observed that, rather obviously, processing ev-

ery pixel of every frame on CPU is very time consuming. We decided that these

calculations should be performed in parallel on CUDA capable GPU, one frame

at a time. The IntensCalc subroutine structure is visualised in figure 4. Below,

it is described in some detail, and the names of relevant variables are also given.

Input parameters and data. The subroutine requires some pre-prepared data from

PikeReader:

• movie file name and number of frames (NumFrames), selected colour chan-

nels with appropriate wavelength and other minor items passed from Pik-

eReader GUI, all included in handles variable, which contains most of Pik-

eReader environment

• masks, corresponding to colour channels, selecting regions of interest for

scattering signals (ipR, ipG, ipB), as well as respective backgrounds aver-

aged over separately selected regions.

• image correction arrays (both angular and intensity, pre-calculated with

13

RayTracingCUDA). Intensity correction arrays for each colour have corre-

sponding mask applied (ICR_N, ICG_N, ICB_N).

• vectors of indices of selected pixels, sorted versus azimuth angle (I_S_R,

I_S_G, I_S_B). The azimuth angles are assigned to pixels also by RayTracingCUDA

subroutine.

Movie-reading thread. The thread reading a movie from the hard drive was made

fast and simple. It just reads a movie in optimal 64 kB blocks and copies it to

640 kB buffer which is slightly bigger than one frame (614400 B). 640 kB buffers

are organised by a cyclic buffer of pointers. The cyclic buffer is encapsulated

in a class usually referred to as a monitor, which allows easy and safe thread

synchronisation. Cyclic buffer solves the problem of Random Access Memory

(RAM) being usually smaller than a movie recorded in experiment (tens of GB).

The reading thread writes to the cyclic buffer, while the frame-processing thread

(described in the next section) reads data from cyclic buffer, performs extensive

computations and discards used data from cyclic buffer. In order to guarantee

smooth data flow, each 640 kB buffer in the cyclic buffer has 4 states: ready

empty, ready full, used for writing, used for reading, and the cyclic buffer has four

corresponding methods: claimForWrite, writeEnd, claimForRead, readEnd.

Additionally, a larger size of the cyclic buffer helps with balancing uneven reading

and calculation paces, originating from operations overheads or using resources

by other processes.

Frame-control thread. The movies are encoded in avi ARW6 (16-bit, raw) for-

mat. To our best knowledge, the Decodec for this dedicated format has not been

published, so the movie format had to be analysed with a Hex editor. It was found,

14

that due to Pike camera hardware and driver peculiarities, the positions of frames

in avi container are a function of such camera parameters as shutter and exposition

times. In consequence, the frame data position versus the frame header can vary

even within the movie. We found that there may exist additional garbage data

between a frame header and the actual frame data as well as between actual data

and the JUNK section, and before the next frame header. In order to find frame

data, the frame header (00db614400) must be found first. Then, after jumping by

the frame size, the header of the next frame can be searched. However, the JUNK

section also must be spotted. Usually, the frame data be may be found adjacent

to the left of the JUNK section (if it is present) or else adjacent to the left of the

next frame header. In rare cases (once per movie) JUNK section was found within

the frame data. Since proper handling of such cases significantly complicates the

algorithm, we decided to handle them manually at later stages of data processing.

Frame processing with GPU. The Frame-control thread retrieves frames from 640

kB buffers from the cyclic buffer, following the above procedure. It is highly prob-

able that at least one full frame will be found in two consecutive 640 kB buffers.

When a frame is successfully retrieved from the cyclic buffer, it is copied to GPU

global memory, and a sequence of CUDA image-processing kernels (GPU sub-

routines which execute the same algorithm for every given set of data in parallel)

is called.

Pixel-value kernel First, each pixel value is calculated. The 14-bit pixel

value, yielded by analog-digital converter of the camera, is stored in 2 bytes: the

first is the older 8-bit part, while the second byte contains 6 younger bits in re-

versed order. In order to calculate the pixel value, the first byte must be right-

15

shifted by 2 and the second byte must be 6-bit reversed (using a look-up table was

found the fastest method) and added to the first one.

Demosaic kernel Each (raw) frame is decomposed (with a demosaic kernel)

into three (RGB) colours (arrays). Later operations are performed on the selected

colour channels in sequence.

Distortion-correction kernel The appropriate (averaged) background value

is subtracted from each selected colour channel (array) and the result is divided by

the intensity-correction array with the corresponding mask applied. In this way,

the amount of data is reduced by removing the irrelevant pixels and each frame

intensity distribution is corrected.

Moving-average kernel All pixels (indices) in each colour channel are sorted

versus the azimuth angle and the resulting angular intensity distributions (vectors)

are smoothed with the moving average algorithm. Atomic addition doesn’t really

block threads, so this step of the moving average algorithm is quite fast. However,

in order to save computation time and resources, the division operations should be

limited and an additional helper kernel is called just for performing divisions.

Rescaling kernel The last kernel rescales the angular intensity distribution

vectors (for each colour channel) down to a fixed length of 700. Finally, these

vectors are copied from GPU memory to the corresponding addresses in MATLAB

memory.

16

4. Conclusions

Harnessing of graphics processing unit (GPU) via Compute Unified Device

Architecture (CUDA) platform has enabled a very significant reduction of com-

putation time at a moderate cost. We have rewritten the Mie Scattering Lookup

Table Method (MSLTM) codes from MATLAB to CUDA C/C++. We had already

reported the CUDA code for inverse problem solving making use of GPU [8]. In

case of the inverse problem solving we had obtained up to 800-fold speed-up in

comparison to the single-thread MATLAB code running on CPU, while in case

of new data preprocessing for inversion procedure code we obtained an overall

speed-up of ∼ 400-fold. In all cases, the time used for calculations was reduced

from hours to seconds. Some of the computational stages have become instan-

taneous and the data preprocessing time has been practically reduced to the time

needed for preparation of required parameters. We aim to automatise some of

the manual steps in the preprocessing stages to further reduce the preprocessing

time. All code updates will instantly be made available on GitHub repository. In

general, short data processing time should open way to precise on-line particle

characterisation.

Acknowledgment: The authors acknowledge financial support from the National

Science Centre, Poland, grants number 2014/13/D/ST3/01882 and 2014/13/B/ST3/04414

and a hardware grant from NVIDIA Corporation.

[1] N. Riefler, T. Wriedt, Intercomparison of inversion algorithms for particle-

sizing using Mie scattering, Particle & Particle Systems Characterization

25 (3) (2008) 216–230. doi:10.1002/ppsc.200700039.

[2] F. Onofri, A. Lenoble, H. Bultynck, P. Guéring, High-resolution laser

17

diffractometry for the on-line sizing of small transparent fibres, Optics Com-

munications 234 (1-6) (2004) 183–191. doi:10.1016/j.optcom.2004.02.026.

[3] F. Onofri, K. Ren, M. Sentis, Q. Gaubert, C. Pelcé, Experimental val-

idation of the vectorial complex ray model on the inter-caustics scat-

tering of oblate droplets, Optics Express 23 (12) (2015) 15768–15773.

doi:10.1364/OE.23.015768.

[4] H. He, W. Li, X. Zhang, M. Xia, K. Yang, Light scattering by a

spheroidal bubble with geometrical optics approximation, Journal of Quan-

titative Spectroscopy and Radiative Transfer 113 (12) (2012) 1467–1475.

doi:10.1016/j.jqsrt.2012.03.011.

[5] A. Lugovtsov, A. Priezzhev, S. Nikitin, Light scattering by arbitrarily ori-

ented optically soft spheroidal particles: Calculation in geometric optics ap-

proximation, Journal of Quantitative Spectroscopy and Radiative Transfer

106 (1-3) (2007) 285–296. doi:10.1016/j.jqsrt.2007.01.041.

[6] H. Yu, F. Xu, C. Tropea, Optical caustics associated with the pri-

mary rainbow of oblate droplets: simulation and application in non-

sphericity measurement, Optics Express 21 (22) (2013) 25761–25771.

doi:10.1364/OE.21.025761.

[7] M. Sentis, F. Onofri, L. Méès, S. Radev, Scattering of light by large bub-

bles: Coupling of geometrical and physical optics approximations, Jour-

nal of Quantitative Spectroscopy and Radiative Transfer 170 (2016) 8–18.

doi:10.1016/j.jqsrt.2015.10.007.

18

[8] D. Jakubczyk, S. Migacz, G. Derkachov, M. Woźniak, J. Archer, K. Kol-

was, Optical diagnostics of a single evaporating droplet using fast parallel

computing on graphics processing units, Opto-Electron. Rev. 24 (3) (2016)

42–50. doi:10.1515/oere-2016-0019.

[9] J. Nickolls, W. Dally, The GPU computing era, Micro, IEEE 30 (2) (2010)

56–69.

[10] M. Daga, A. Aji, W. Feng, On the efficacy of a fused CPU+GPU proces-

sor (or APU) for parallel computing, in: 2011 Symposium on Application

Accelerators in High-Performance Computing, IEEE, 2011, pp. 141–149.

[11] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,

D. Patterson, W. Plishker, J. Shalf, S. Williams, K. Yelick, The landscape of

parallel computing research: A view from Berkeley, Tech. rep., Technical

Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley (2006).

[12] S. Cook, CUDA programming: a developer’s guide to parallel computing

with GPUs, Newnes, 2012.

[13] https://github.com/sigrond/RayTracingCUDA TJ (2016).

[14] D. Jakubczyk, G. Derkachov, M. Kolwas, K. Kolwas, Combining weighting

and scatterometry: Application to a levitated droplet of suspension, Journal

of Quantitative Spectroscopy and Radiative Transfer 12 (0) (2013) 99 – 104.

doi:10.1016/j.jqsrt.2012.11.010.

[15] R. Hołyst, M. Litniewski, D. Jakubczyk, K. Kolwas, M. Kolwas, K. Kowal-

ski, S. Migacz, S. Palesa, M. Zientara, Evaporation of freely suspended sin-

19

gle droplets: experimental, theoretical and computational simulations, Rep.

Prog. Phys. 76 (2013) 034601(19pp). doi:10.1088/0034-4885/76/3/034601.

[16] G. Derkachov, D. Jakubczyk, M. Woźniak, J. Archer, M. Kolwas, High-

precision temperature determination of evaporating light-absorbing and

non-light-absorbing droplets, J. Phys. Chem. B 118 (2014) 12566–12574.

doi:10.1021/jp508823z.

[17] R. Hołyst, M. Litniewski, D. Jakubczyk, M. Zientara, M. Woźniak,

Nanoscale transport of energy and mass flux during evaporation of liquid

droplets into inert gas: computer simulations and experiments, Soft Matter

9 (32) (2013) 7766–7774. doi:10.1039/c3sm50997d.

20

PikeReader application

CPU GPU (CUDA)

pixels processed in parallel
.......

decodec: LSB 6-bit
inversion & shift

demosaic

colour channels in sequence

background subtraction &
division by {intensity

correction array + mask}

rescaling to 700 data points

MATLAB thread

frame-control thread

MEX synapse

selecting avi file

image-correction thread

preparing
parameters for

ray tracing

MEX synapse

107 – 109 rays traced in
parallel from the droplet
through the viewing port
and lens system to CCD

.......
atomic addition of threadsMEX synapse

image correction
arrays

finding the
beginning of movie

movie-reading thread

preparing masks
& parameters for
movie processing

frame recognition

Ipp & Iss arrays MEX synapse

sequential
file-reading

from hard disk
in 64 kB blockscyclic buffer

moving average:

atomic addition division

IntensCalc
subroutine

RayTracingCUDA
subroutine

monitor

azimuth angle [rad]

tim
e

[s
]

1.3 1.4 1.5 1.6 1.7 1.8

30

20

10

0

0.6

0.4

0.2

0

1.0

0.8

1.2

1.4

lig
ht

 in
te

ns
ity

 [a
rb

.u
.]

0 0.5 1 1.5 2 2.5 3

rays/pixel ×1000

Figure 4: Top: the outline of PikeReader application. Bottom-left: the raw result of the ray tracing

subroutine in one of the colour channels. Bottom-right: visualisation of a sample sequence of

corrected scattering diagrams (Ipp array).

21

