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Abstract
Evaporation is ubiquitous in nature. This process influences the climate, the formation of
clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car
engines, the structure of dried materials and many other phenomena. Recent experiments
discovered two novel mechanisms accompanying evaporation: temperature discontinuity
at the liquid–vapour interface during evaporation and equilibration of pressures in the
whole system during evaporation. None of these effects has been predicted previously by
existing theories despite the fact that after 130 years of investigation the theory of
evaporation was believed to be mature. These two effects call for reanalysis of existing
experimental data and such is the goal of this review. In this article we analyse the
experimental and the computational simulation data on the droplet evaporation of several
different systems: water into its own vapour, water into the air, diethylene glycol into
nitrogen and argon into its own vapour. We show that the temperature discontinuity at the
liquid–vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417–28) is a
rule rather than an exception. We show in computer simulations for a single-component
system (argon) that this discontinuity is due to the constraint of momentum/pressure
equilibrium during evaporation. For high vapour pressure the temperature is continuous
across the liquid–vapour interface, while for small vapour pressures the temperature is
discontinuous. The temperature jump at the interface is inversely proportional to the
vapour density close to the interface. We have also found that all analysed data are
described by the following equation: da/dt = P1/(a + P2), where a is the radius of the
evaporating droplet, t is time and P1 and P2 are two parameters. P1 = −λ�T/(qeffρL),
where λ is the thermal conductivity coefficient in the vapour at the interface, �T is the
temperature difference between the liquid droplet and the vapour far from the interface,
qeff is the enthalpy of evaporation per unit mass and ρL is the liquid density. The P2

parameter is the kinetic correction proportional to the evaporation coefficient. P2 = 0
only in the absence of temperature discontinuity at the interface. We discuss various
models and problems in the determination of the evaporation coefficient and discuss
evaporation scenarios in the case of single- and multi-component systems.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Evaporation is a process ubiquitous in nature [1] and
technology [2]. This process influences not only the climate
[1, 3, 4], the formation of clouds [5], transpiration in plants

[6], the survival of arctic organisms [7], the efficiency of
car engines [8], but also the structures of dried materials
[9–11]. Solar radiation is not completely absorbed by the
Earth’s atmosphere—the ocean’s surface collects most of
the incoming solar radiation. Thus solar radiation provides
energy for water evaporation. Water evaporation has a
tremendous impact on global warming, because water is the
main greenhouse gas in the atmosphere [1, 3]. Even though
there is a small triggering by CO2, which initially influences the
tropospheric temperature increase, the subsequent moistening
of the atmosphere by water vapour is considered by many to
be an important feedback mechanism [12]. Fuel evaporation
in combustion engines is another process whose efficiency
determines the fuel consumption of car engines [2, 8].

Models and theories of evaporation have been developed
for over 100 years, but experimental studies have lagged
behind the theory. Our knowledge about the dynamic
pathway of this phase transition is limited and largely
based on speculations rather than on solid experimental
facts or computer simulations. Irreversible pathways
between equilibrium states are not well understood. Less
is known about general rules, which govern systems far
from equilibrium. Even in the old fields of irreversible
thermodynamics there is plenty to be discovered. On the other
hand, experiments encountered problems in the determination
of spatial and temporal profiles of thermodynamic parameters
during evaporation including the precise measurement of
vapour pressure at the micrometre/micrometre length scales.
In 1999 Ward and coworkers [13] performed experiments of
water evaporation and determined the temperature profile of
water and its vapour during evaporation. The temperature
of the evaporating liquid (water) was close to the triple point
and consequently the vapour pressure was low. Therefore the
mean free path in the vapour was large (from 9 to 25 µm).
Special small thermocouples were used [13] to measure the
temperature profile with spatial resolution of the order of one
mean free path in the vapour, i.e. ∼10 µm. The temperature
profile exhibited an unexpected jump at the interface with
the vapour temperature being larger by approximately 10 K

than the liquid temperature. This liquid–vapour temperature
difference at the interface [13] was opposite in sign to the one
predicted by the kinetic theories [14–18]. The theory predicted
temperatures smaller in the vapour than in the liquid. For the
experimental conditions of Fang and Ward [13] the classical
kinetic theory predicted a temperature jump of 0.007 K [19].
Thus the theoretical prediction was three orders of magnitude
too small and, moreover, in the opposite direction. This
result was surprising because the theory of evaporation was
considered to be mature after more than 100 years of study [20].
Ward and coworkers further investigated the problem [21] and
concluded that in other substances a substantial temperature
jump at the interface also occurs. Theoretical studies of the
effect followed the experimental studies [22] to explain the
phenomenon, including the statistical rate theory (SRT) for
evaporation [23]. Two main effects were considered as a source
of the jump: energy flux across the vapour and the difference
between the vapour pressure during evaporation and the actual
saturation pressure at the liquid temperature. The transport of
energy across the vapour phase was not considered in classical
theories as a rate limiting step of evaporation [22, 24]. In
classical theories more emphasis was put on the mass transport
from the interface by diffusion or kinetic-limited motion.

Another surprising result, related to pressure profiles
during evaporation, came from computer simulations of
evaporating droplets of Lennard-Jones fluids [25–27]. The
simulations followed the solutions of the equations of
the irreversible thermodynamics in the two phase region
during evaporation of argon droplets [28, 29]. Irreversible
thermodynamics studies predicted [28] that pressures are
equal in the vapour phase everywhere and satisfy the
Laplace law for the evaporating droplet. This observation
of momentum/pressure equilibrium during evaporation was
overlooked in all previous theoretical studies. The solution
of the equations of irreversible thermodynamics was obtained
for a system 1 µm in size, heated at the boundaries, with
a 60 nm droplet evaporating in the middle of the spherical
container. The study also indicated that the main process
limiting evaporation was the transport of energy across the
vapour. Due to numerical problems, the study was limited to
high vapour densities close to the critical point. The ratio of
the liquid density to the vapour density was at most 10. The
results were tested in computer simulations of the Lennard-
Jones fluid [25] further away from the critical point with the
density ratio as high as 100.
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The computer simulations confirmed that during
evaporation the momentum/pressure equilibrium is satisfied
and the Laplace law obeyed in the process even for nanoscopic
droplets (here the system size was 90 nm with a 9 nm
droplet). Mechanical equilibrium was further confirmed in the
evaporation of bi- and triatomic Lennard-Jones liquids [27].
The most spectacular manifestation of momentum/pressure
equilibrium during evaporation was found in the computer
simulations of evaporation into the vacuum. In this case the
momentum flux of the evaporating liquid exactly matched
the liquid pressure setting ‘mechanical equilibrium’ in these
extreme conditions of evaporation [26, 27]. Mechanical
equilibrium means that at every point of the system the net
force is zero. At equilibrium this condition means equality
of pressure at every part of the system. In non-equilibrium
processes a net momentum flux should be matched by the
pressure, e.g. for evaporation into the vacuum the momentum
flux from the flat interface is equal to the pressure inside the
evaporating liquid. Computer simulations [25] also showed
that for low vapour pressure the temperature at the interface
jumps as in the experiments of Fang and Ward [13]. The
temperature jump was as high as 30 K, but decreased to
zero for higher vapour pressures in accordance with the
solutions of the equations of irreversible thermodynamics
close to the critical point [28]. During the last decade
previous classical theories of evaporation based on the
detailed study of mass transport have been questioned on
the basis of these new results: the temperature jump at
the interface and momentum/pressure equilibrium during
evaporation. Although we still wait for precise measurements
which would confirm momentum/pressure equilibrium during
evaporation, already Ward and Stanga [30] have noticed
that during evaporation the vapour pressure was close to
the saturation pressure at the liquid temperature—indicating
indirectly the momentum/pressure equilibrium in the system.

None of these effects have been fully incorporated into
the models of evaporation so far and therefore our current
understanding of evaporation needs deep revisions. In this
paper we perform a combined analysis of experimental and
computational simulation data to address the aforementioned
issues. The data concern: evaporation of liquids (water and
argon) into its own vapour and evaporation of water and
glycol into air or nitrogen atmosphere. We concentrate our
attention on the description of a particularly simple system
for analysis: a single freely suspended droplet. We present a
phenomenological equation describing the radius of the droplet
as a function of time and analyse this equation. We show
that the phenomenological equation is valid in all studied
cases. The continuous description based on the irreversible
thermodynamics is presented and two major approximate
models are given. One, which follows the original work of
Maxwell is concentrated on the mass diffusion in vapour as the
rate limiting step for evaporation. The second model is based
on the transport of heat across the vapour. We discuss how
both models fit the data. Additionally we show that in most
cases there are kinetic corrections to the existing data. We
show in computer simulations that kinetic corrections appear
when there is a temperature jump at the interface. In particular

we show that, in order to fully explain evaporation, a detailed
analysis of the temperature, density and pressure profiles
during evaporation is needed. The analysis of the mass flux
only is not sufficient to discern between different theories. We
leave the problem of the momentum/pressure equilibrium as a
constraint in evaporation theories open, although we explain
qualitatively how momentum/pressure equilibrium affects the
temperature jump at the interface.

The paper is organized as follows: In section 4 we
discuss the details of the experiments on evaporation of
droplets trapped in electric fields. In section 2 we discuss the
hydrodynamic models for evaporation, the kinetic models and
corrections to the continuous description. Section 3 is devoted
to the discussion of evaporation coefficients and the influence
of impurities in a droplet upon evaporation. In section 5
we fit two different models to the experimental data. One
model assumes that evaporation is limited by the diffusive mass
transfer from the interface while the second model assumes that
the rate limiting factor is heat transfer through the vapour to the
surface of the evaporating droplet. We also discuss SRT theory
applied to the evaporation of water into its own vapour and into
the nearly saturated water/nitrogen vapour. Section 6 presents
a comparison between the theory discussed in the previous
section and the computational simulations of evaporating
droplets of argon at the nanoscale. The detailed analysis
of finite size effects shows how to re-scale the simulation
parameters to compare the model and the experiments at the
microscale to the nanoscale simulations correctly. Section 7
contains the conclusions and discussion.

2. The evaporation model based on the Maxwell
description

The problem of the stationary evaporation of a free, spherical,
motionless droplet of a pure liquid in an infinite, inert medium
was first addressed by Maxwell [31]. His description, based on
mass and heat conservation equations, is still widely utilized
and considered generally adequate. A general equation of mass
conservation for a spherically symmetric system may take the
following form [32] (compare e.g. [33]):

∂

∂t

(
ρr2Yi

) = ∂

∂r

(
ρr2D

∂Yi

∂r

)
− ∂

∂r

(
ρur2Yi

)
, (1)

where r is the distance from the droplet centre, ρ is the
total density of the gaseous environment, Yi is the mass
fraction of component i (for a two-component system: Yvap +
Yair = 1, ∂Yvap/∂r = −∂Yair/∂r; one component: Yvap ≡ 1,
∂Yvap/∂r ≡ 0), D is the gas-phase (mutual) diffusion
coefficient and u is the flow (radial) velocity. In the case of
an evaporating droplet u is relative to the regressing surface.
The significance of various processes that (1) encompasses
varies substantially against the system’s composition and
thermodynamic conditions. We shall try to address this issue.

While the analysis of transient processes during
combustion may require consideration of the time derivative,
(quasi) stationary evaporation enables its omission. The
so-called ‘moving boundary’ effect [34] is automatically lost
when the time derivative is dropped. For stationary but fast

3



Rep. Prog. Phys. 76 (2013) 034601 R Hołyst et al

evaporation, it should and may be accounted for by other
means.

The mass balance at the interface requires that the steady
state vapour mass flux described with (1) equals to the
evaporation rate of the droplet a2ȧρL, where ρL is the density
of liquid and ȧ ≡ da/dt . The non-evaporating component is
obviously not transported across the interface (the solubility
of gases in liquids is neglected here). In compact form these
conditions can be expressed as:

ρr2D
∂Yi

∂r
− ρur2Yi = −a2ȧρLδi vap, (2)

where δi vap is the Kronecker delta. It is worth noting that
the equation of continuity for the whole system takes then a
simple form:

ρur2 = a2ȧρL. (3)

For a two-component system, (2) for a non-evaporating
component can easily be identified as the definition of Stefan
flow. This flow plays an important role only for a limited range
of thermodynamic conditions: partial vapour pressure must be
at least comparable to the partial pressure of the remaining gas.
For a water droplet under atmospheric conditions Stefan flow
constitutes a correction to the diffusive flow of only ∼1%. For
slowly evaporating DEG it is even smaller. Then u can be set
to zero. The solution of (2) under such an approximation will
be discussed later on.

Under the assumption of stationary evaporation, ideal gas
(density related to temperature via an equation of state) and
constant ρD, (1) can be easily integrated. It is convenient
to write down the resulting equation in a form describing the
evolution of the droplet radius (compare [35]):

ȧ = − ρD

ρLa
ln

[(
1 − MT∞

MairTL

pa(TL)

p

) / (
1 − M

Mair

p∞
p

)]
,

(4)

where a stands for the droplet radius, T∞ and TL are
temperatures far from the droplet and at the droplet surface
in the liquid phase, respectively, p, pa and p∞ are the
total pressure of the gaseous environment, the partial vapour
pressure at the droplet, surface and the partial vapour pressure
far from the droplet, respectively, M is the molecular mass
of the liquid/vapour and Mair is the effective molecular mass
of the ambient gas. It has been pointed out [36] that a strictly
applied boundary condition would require TL on the gas side of
the interface (see (10)). However, a temperature discontinuity
is encountered there [13, 36], and thus, such an attitude may
introduce significant errors. In general ρD depends on the
temperature profile T (r) and if necessary should be integrated
accordingly. For large droplets down to several micrometres,
pa � psat, the equilibrium (saturation) vapour pressure at a
given temperature. However, if the droplet is relatively small
the effects of the surface tension must also be accounted for.
Then, the equilibrium vapour pressure above the interface of
radius a is expressed by the Kelvin equation (see e.g. [37]):

pa(TL) = psat(TL) exp

(
M

RTLρL

2γ

a

)
, (5)

where γ is the surface tension of the liquid and R is the
universal gas constant. The possible effects of the droplet
charge are negligible for micrometre-sized droplets and the
effects of impurities present in real liquids will be discussed
later on.

In the case of MT∞pa(TL) � MairTLp (negligible Stefan
flow in a two-component system), (4) reduces to the Maxwell
equation:

ȧ = MD

aRρL

[
p∞
T∞

− pa(TL)

TL

]
. (6)

For low-volatility liquids under standard conditions,
several micrometre-sized droplets (surface tension energy is
negligible) and an infinite gaseous medium initially void of
vapour, the evaporation can be described with an ultimately
simple diffusive mass transport equation [38, 39],

ȧ = − D

ρLa

Mpsat(TL)

RTL
. (7)

For a one-component system (e.g. a droplet of argon,
modelled by a Lennard-Jones liquid see e.g. [40, 41],
evaporating into its own vapour), (2) degenerates into (3).
As a consequence u cannot be neglected though it does
not fall within the definition of Stefan flow. Moreover, it
becomes obvious that the only possible gradient of ρ is caused
by the gradient of T . Then, one-component evaporation
should be described with the equation of transport of heat and
equations (4), (6) and (7) are out of place, since the mutual
diffusion cannot be simply replaced by self-diffusion.

As the evaporation taking place at the droplet’s surface
is associated with the change of enthalpy (latent heat) the
equation of the transport of mass must be, in general,
accompanied by the equation of the transport of heat. The
appropriate fluid dynamics equation for energy transport in a
gaseous medium in a reasonably general form is [32]:

∂

∂t

(
ρr2h

) = ∂

∂r

(
ρr2D

∑
i

hi

∂Yi

∂r

)
+

∂

∂r

(
λr2 ∂T

∂r

)

− ∂

∂r

(
ρur2h

)
+ r2 ∂p

∂t
, (8)

where λ is the thermal conductivity of the gaseous medium,
h, hvap and hair are enthalpies of compound gaseous medium,
vapour and air, respectively; h = cP (T −T∞) where cP , being
the specific heat capacity under constant pressure, was assumed
constant within the range of temperatures concerned.

Again, for quasi-stationary processes the time derivatives
may be dropped and the steady state transport of heat for either
a one- or two-component system can be described with the
following concise equation:

∂

∂r

[
ρr2D

(
hvap − hair

) ∂Yvap

∂r

]
+

∂

∂r

(
λr2 ∂T

∂r

)

− ∂

∂r

(
ρur2h

) = 0. (9)

The heat transported in a gaseous medium, described with
the above equation, is balanced at the interface by the heat
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transported from the liquid phase and the heat needed for
vaporizing liquid at the surface:

λa2 ∂T

∂r

∣∣∣∣
r→a(+)

= λLa2 ∂T

∂r

∣∣∣∣
r→a(−)

+ a2ȧρLqeff , (10)

where λL is the thermal conductivity of the liquid medium
and qeff is the effective enthalpy of vaporization (per unit
mass). The ‘effective value’ approach is adopted since
the enthalpy of vaporization is defined and measured for
equilibrium conditions, while droplet evaporation may be quite
far from equilibrium. It is usually assumed, and we follow this
scheme here, that the transport of heat in the liquid phase is
negligible and TL is uniform in the liquid, though in general
there may also be a considerable temperature gradient in the
droplet.

Combining equations (9) and (10) under the assumption
of instantaneous evaporation (no heat consumption from the
liquid phase) and the constant cP leads to a more general
expression than (4) (compare e.g. [40, 41]):

ȧ = − λ

aρLcP

ln

[
1 +

cP (T∞ − TL)

qeff

]
. (11)

It is worth noticing that in many cases the transfer of heat
by conductivity and by diffusion is comparable. The relative
importance of these two modes is characterized by the Lewis
number Le = (λ/cP )/(ρD). In the case of argon droplets
evaporating into their own vapour Le � 1 with good accuracy
(compare LJ simulations below; again, D is self-diffusion).
For water droplets in air under standard conditions Le � 1.16.
For droplets of DEG under similar conditions Le � 1. Le = 1
is a readily made approximation in order to obtain formulae
of the (11) type. However, for both one- and two-component
systems (11) can be derived without such an approximation
and so is valid for any Le as far as cP is constant.

Again, under the assumption of cP (T∞ −TL) � qeff , (11)
takes the form:

ȧ = − λ

aqeffρL
[T∞ − TL(t)] (12)

or

ȧ = − ρDcP

aqeffρL
[T∞ − TL(t)]

for Le = 1. It is worth noting that in the case of slow, quasi-
isothermal evaporation (T∞ − TL(t) < 0.1 K), the coupling of
equations (4) and (11) (as well as for their simplified forms)
via TL can be neglected, and they can be used independently.
We can also use the enthalpy of vaporization measured at
equilibrium qeff = q.

2.1. Kinetic effects

The equations of fluid dynamics do not hold where the
gradients of described quantities are high [33]. In particular,
the fluid dynamics description of droplet evaporation assumes
continuity of temperature across the interface. Close to
the critical point, it seems adequate (as was shown for

LJ e.g. in [25]) but generally is not the case [13, 36]. Similarly,
a high gradient of vapour density close to the surface must be
considered [42].

The evaporation in the region below the mean free path of
the gas molecule from the surface is treated as kinetic-limited
[43] and thus governed by the Hertz–Knudsen–Langmuir
(HKL) equation. For a droplet in vacuum it takes the following
form (compare [44]):

ȧ = −αC

ρL

psat(TL)√
2πkTL

√
m, (13)

where m is the mass of a molecule, k is the Boltzmann constant
and αC is the evaporation coefficient. This coefficient, defined
as the probability of the crossing of the interface by a molecule
impinging on it, was introduced by Knudsen [45] to reconcile
the experimental findings with the predictions of the theory.
The experimentally observed evaporation rate in the kinetic
regime is never greater than theoretically allowed by the kinetic
theory of gases. Although conceptually seemingly simple, this
coefficient turned out to be quite difficult to measure. There is
a barrier at the gas–liquid interface, although its nature has not
been thoroughly understood yet (see e.g. [46–49]). The issue of
evaporation into vacuum, also essential for understanding the
kinetics at the gas–liquid interface, has not been satisfactorily
resolved yet (see e.g. [26, 50–53]), however it seems that the
application of the HKL equation in its standard form may not
be adequate in that case. An especially unexpected result is
presented in [26]. The flux of evaporation of an LJ liquid into
vacuum, obtained from MD calculations, was reproduced with
the HKL equation where stagnation temperature was used for
TL. Here αC = 2. Such value of this factor indicates that
it cannot be interpreted straightforwardly as the evaporation
coefficient, which is defined in terms of a probability smaller
than or equal to 1 [45].

It is a standard practice [35, 38] to write a single equation
accounting both for diffusive and kinetic-limited transport. It is
usually done by matching equations (6) and (13) at the distance
from the droplet �C where the diffusive and kinetic-limited
fluxes balance. �C is comparable with the mean free path of
particles of the surrounding gaseous medium la , although its
exact value is rather arbitrary (compare [38]), which obscures
the physical sense of the resulting equation (e.g [38, 54]). It
must be also kept in mind that repeating this procedure for
equations (4) and (11) (accounting for the Stefan flow) would
lead to slightly different formulae.

In our works we have followed [35, 38] and used (6), with
D substituted by an effective diffusion coefficient taking into
account the kinetic effects

Dk(a, TL) = D

a/(a + �C) + D
√

2πM/(RTL)/(aαC)
. (14)

It should be highlighted that in order to arrive at (14) a further
approximation of TL = T (a + �C) is made. It manifests as an
overestimation of αC for higher T∞ − TL (>0.3 K for water).
Trying to avoid this approximation excessively complicates
calculations. However, it is possible to partially correct the
value of αC afterwards, using the formula developed in [43].
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Similarly, the effective thermal conductivity (with kinetic
effects included) of ambient gas (moist nitrogen/air for
experiments with water in [43]) may be expressed as follows
(and used in (12) instead of λ):

λk(a, TL) = λ

a/(a + �T) + λ
√

2πMair/(RTL)/(aαTρcP )
,

(15)

where �T and αT (the thermal accommodation coefficient)
play roles analogous to �C and αC, respectively.

Two characteristic length scales can be identified in each
of the above formulae: �C and 4D/(αCv) in (14) and
�T and 4λ/(αTρcP vair) in (15), where v and vair are the
average thermal velocity of vapour and ambient gas molecules,
respectively. However, it is worth noticing that

�C

4D/(αCv̄)
� 3αCD∗

4D
and

�T

4λ/(αTρcP vair)
� 3αT

4Le
,

(16)

where D∗ is the coefficient of self-diffusion of vapour
and the Lewis number is associated with self-diffusion in
ambient gas. Thus, the two length scales are linked and
furthermore �C and �T are usually (significantly) smaller. As
a consequence, a single, longer length scale aC can be used
and the dimensionless droplet radius κ can be introduced as
follows:

κ = a

aC
= a

4D/(αCv̄)
or κ = a

aC
= a

4λ/(αTρcP vair)
,

(17)

respectively.
For �C = �T � 0 (see (19) and (21) in section 5)

Dk(a)/D = λk(a)/λ. The magnitude of Dk and λk normalized
to D and λ for �C = �T = 0 is presented in figure 1 versus
both a and κ . It can be seen that for a dimensionless droplet of
radius 1 � κ � 5 (water droplet shrinking from ∼6 to ∼1 µm)
under standard temperature and pressure (STP) conditions,
the influence of kinetic effects upon the evaporation is clearly
recognizable but not dominating.

3. Discussion of evaporation coefficient issues

Many attempts have been made over nearly a century to
determine the values of αC and αT experimentally. Most of the
experiments considered water and a variety of experimental
methods were used. Both condensation on and evaporation
from the surface of bulk liquid, liquid films, jets and droplets
were investigated in various environments (vacuum, standard
air, passive or reactive atmospheres) under various pressures
and for various water vapour saturations. Small droplets, such
as encountered in clouds, have been favoured since kinetic
effects manifest strongly for them. Suspended droplets, trains
of droplets, clouds of droplets and single trapped droplets were
studied. The results obtained by different authors spanned
from ∼0.001 to 1 for αC and from ∼0.5 to 1 for αT (see e.g.
[34, 55–62] and [38, 63–66] for reviews). There seems to be
a better agreement about the value of αT. The measurements
for other vapour–liquid systems are fewer and similarly non-
conclusive. Adsorption of heterogeneous vapours on liquid

Figure 1. Effective diffusion and thermal conductivity coefficients
Dk and λk normalized to D and λ, respectively, presented versus
droplet radius, both in dimensional form a and dimensionless form
κ = a/aC, where the characteristic length scale aC = 1.18 µm (see
definition (17) and compare with section 5). It should be pointed out
that for a � �C, �T Dk/D = λk/λ → κ . The calculation was
performed for the conditions when Dk(a)/D = λk(a)/λ,
corresponding to data presented in figure 6: water droplets in
nitrogen atmosphere, 20 ◦C, 998 hPa, αC = 0.14, αT = 0.15.

water seems to attract more attention (see [67–72] and [73]
for reviews) than single-component evaporation/condensation
(see [35] and references therein, and [49, 74–76]). The
results seem to suggest that a low evaporation coefficient
corresponding to a high interfacial barrier is not unique for
water [46, 72].

Experiments with evaporation of polar liquids into vacuum
(see e.g. [48] for unsteady state evaporation or [77] for jet
stream tensimeter experiments and references in [65, 78]) yield
higher values of αC than (quasi) equilibrium experiments
[43, 66, 79]. On the other hand, much lower values of αC at
300 K can be found in [76] and the works cited therein. In
those studies, a so-called dropwise condensation method was
used (compare [61] for water). This method yields αC � 0.4
at atmospheric pressure and αC → 0.2 for p → 0.

The measurement of temperature dependence of αC or αT

was rarely attempted and the results were inconclusive. Recent
studies for water by Li et al [55] and by Winkler et al [54] (see
[66] for comparison of these studies) can serve as an example.
The authors of the first study (Boston College/Aerodyne
Research Inc. group) found that αC decreases with temperature
within the temperature range between 257 and 280 K. The
authors of the second study (University of Vienna/University
of Helsinki group) claim that αC and αT exhibit no temperature
dependence between 250 and 290 K. Our results for water
versus temperature [43] are in excellent agreement with those
obtained with a fundamentally different method of the BC/ARI
group. On the other hand, our modelling and the modelling
of the UV/UH group seems to differ only by second order
effects, while the results differ significantly. What, in our
opinion, makes a fundamental difference can be seen in the
data from [54]. They exhibit a strictly linear a2(t) dependence
(the so-called D2-law, see e.g. formula (32)) which signifies
that, quite unexpectedly, the kinetic effects do not manifest
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Figure 2. Estimation of the effect of impurities (ns constant is
proportional to the initial mass fraction of impurities) upon droplet
radius evolution for water droplets evaporating into dry nitrogen
under STP conditions. Dimensionless coordinates κ = a/aC and
dκ/dτ = ȧtC/aC, where aC = 1.14 µm and tC = 2.2 ms. Solid
line—no impurities; dashed line—a small amount of impurities
(ns � 5 × 10−5); dotted line—a considerable amount of impurities
(ns � 1 × 10−3).

strongly. This probably led to an overestimation of αC. All
these experiments show that finding a reliable value of αC is a
difficult task.

3.1. The obscuring effect of impurities

Although in this work we essentially deal with pure liquids, real
liquids used in experiments always contain some impurities.
Real liquids may be (and usually are) simultaneously
contaminated with substances of higher and lower volatility,
as well as with non-volatile substances and insoluble particles.
Although, in our experiments, we took great care to avoid
impurities and their effects, the mode of their influence upon
the observed droplet evolutions must be kept in mind. The
presence of low-volatility (or non-volatile) impurities can be
easily observed in both figures (4) and (5) as well as in
figure 6. In figure 4 it manifests as a ‘kink’ at the end of the
evolution, which, after differentiation appears as a dramatic fall
in figures (5) and (6). We estimated the effect of impurities for
water droplets evaporating into dry nitrogen under conditions
corresponding to the data presented in figure 6. The simplest
model of the influence of an ideally soluble, non-surface-
active, non-volatile impurity was used: the Kelvin (5) was
substituted with the Köhler equation (compare [37, 38]):

pa(TL) = psat(TL) exp

(
M

RTLρL

2γ

a
− ns

(a/a0)
3 − ns

)
, (18)

where a0 is the initial droplet radius and ns is approximately
equal to the initial mass fraction of impurities. We used the
set of equations (6), (12), (14) and (15) together with (18) for
modelling. The dependence of the quantities and parameters
upon temperature was also taken into account. Due to the
extreme simplicity of the model the visualization presented in
figure 2 is qualitative.

For higher impurity concentration, their influence is
significant and highly non-linear. Although the ‘kink’ (the

lowest trace in figure 2) can be easily isolated and avoided, the
evolution is visibly slower even in the diffusion regime. This
additional slant and shift is noticeable even for a seemingly
small concentration of impurities. If not accounted for, it
will mask the values of both the diffusion and the evaporation
coefficients: the diffusion coefficient would seem lower and
the evaporation coefficient higher (see [80] for details).

4. Experimental apparatus and data processing
procedures

Our experimental technique is a specific variation of well-
established thermogravimetry (see e.g. [81, 82]), under
stationary atmosphere and stationary thermodynamic condi-
tions. We used an electrodynamic quadrupole trap (compare
e.g. [61, 83–86]) as a balance and a trapped droplet as a sample.
The sample/droplet mass evolution was obtained, with ∼10−3

accuracy, from the droplet radius evolution (see below). The
outline of the experimental setup as well as the electrodynamic
trap is presented in figure 3. The trap was kept in a small
(∼10 cm3) thermostatic chamber. Droplets were injected into
the trap through the top port. The injector was kept inside
the chamber ensuring that the initial temperature of the droplet
was equal to that of the chamber. The initial droplet radius was
∼10 µm. Usually we were able to follow the evolution of the
radius (in time) for a few micrometres. Before the injection of
each droplet, the chamber (and trap) was purged with filtered
(H14 grade filter), dry nitrogen obtained by vaporizing liquid
nitrogen.

In the case of experiments with water droplets, the
chamber was then filled with saturated water vapour/nitrogen
mixture, obtained by bubbling dry nitrogen through liquid
water. The humidity in the chamber, but outside of the trap, was
tentatively monitored with semiconductor sensors. Settling
time was allowed for equilibration before the measurements,
since the movement of gas with respect to the droplet speeds
up the evaporation of larger droplets. This phenomenon is
actually utilized in standard thermogravimetry. In the case of
experiments with diethylene glycol (DEG), we could not fully
avoid the ubiquitous water vapour diffusing from the elements
of the chamber and the trap. But, at the timescale of several
minutes, the effect of water vapour could be neglected (relative
humidity <5%). On the other hand, during experiments
with water droplets we could not be sure of water vapour
saturation in the chamber due to the condensation on the walls,
mainly during filling of the chamber. Complete evaporation
of a droplet several micrometres in radius, in our void
chamber, would give rise to a vapour pressure several orders
of magnitude below the corresponding equilibrium vapour
pressure. Thus, the presence of even several droplets did
not influence the thermodynamic conditions in the chamber.
However, lost droplets can get into the tight spaces of the
trap, which after some accumulation can distort the trapping
field. In order to avoid this distortion, the trap and the chamber
were purged with compressed gas every few hundred injections
and dismantled and thoroughly cleaned every several hundred
injections.
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Figure 3. Schematic view of the experimental setup (top view: droplet injector omitted). Inset: electrodynamic trap drawing (wire-frame
partially rendered).

In our experiments with DEG we used diethylene glycol
99.99% (BioUltra, GC, Fluka) (purity for the lot stated in
GC area % by the manufacturer). For the experiments with
water, we used ultra-pure water produced in the lab (Milli-Q
Plus, Millipore, resistivity ∼18 M� cm, total dissolved solids
<20 ppb, total organic carbon (TOC) �10 ppb, no suspended
particles larger than 0.22 µm, microorganisms �1 colony
forming unit per ml, silicates <0.1 ppb and heavy metals
�1 ppb). All liquids were transferred into the droplet injector
with due care and without delay. The experiment was
conducted within one hour of the transfer. The effects (ionic
dissolving, chemical reactions) caused e.g. by atmospheric
CO2 were avoided by substituting air with nitrogen in the
climatic chamber.

The radius of a droplet as a function of time, a(t), was
obtained by analysing the angular distribution of scattered light
irradiance within the framework of the Mie theory (angle-
resolved static light scattering). This is a well-established
interferometric technique. Its variants (laser imaging for
droplet sizing (ILIDS), interferometric particle imaging (IPI),
Mie scattering imaging (MSI), interferometric Mie imaging
(IMI), etc) are used for particle sizing e.g. in sprays (see
e.g. [87] and references therein). The variant of this technique
that we developed is outlined in [88] (experiments with
water) and in [89] (experiments with slowly evaporating
liquids). Green (532.07 nm) p-polarized and red (654.25 nm)
s-polarized coaxial, counter propagating laser beams of
∼10 mW power each (inside the trap) and ∼0.5 mm waist
were used simultaneously for droplet illumination. Droplet
heating and direct momentum transfer from the beam could be
neglected. The droplet was in the focal point of the objective
lens (with a confocal filter). We recorded (up to ∼40 fps,
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Figure 4. A typical evolution of the radius of a diethylene glycol
droplet under standard temperature and pressure conditions.
Dimensionless coordinates κ = a/aC and τ = t/tC (see section 5),
where the characteristic length scale aC = 1.38 µm and the
characteristic time scale tC = 11.37 s. The region at the end, after
the ‘kink’, corresponds to the strong influence of impurities. Bottom
inset: the magnification of the region bound with the dashed box.
Top inset: an example of a Mie scattering image collected during
this experiment.

640×480 pixels, 12-bit, PixelFly colour camera, pco.imaging)
out-of-focus images produced by the scattering of both beams
(see top inset in figure 4). The field of view corresponded
to 32.48 ± 0.02◦. Its centre was at the azimuthal angle of
90 ± 0.1◦ and the elevation angle of 0 ± 0.3◦. The field of
view was horizontally divided into halves with perpendicular
(s and p) polarizers. Having attributed different polarizations
to different colours enabled the easy checking of polarizer
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leaks (proper setup) and monitoring of depolarization. In
the case of homogeneous droplets, light depolarization was
also used to indicate contamination with solid particles. The
sequence of images was analysed off-line with our software
(written in MATLAB). Each image was integrated with a
proper distribution function over the elevation angle to ensure
a better signal-to-noise ratio. The analysis was based on
comparing the azimuthal distribution of irradiance observed
in each image to the library of patterns obtained with the
aid of Mie theory. Performing analysis for two polarizations
simultaneously and for the whole a(t) evolution rather than
for separate points only, enabled to reduce some experimental
uncertainties significantly. For instance, the position of
interference fringes as a function of a depends on polarization,
while misalignment of the objective versus laser beams
introduces the same error to the azimuthal angle of observation
for both polarizations. Such systematical errors can be
easily accounted for in the optimization procedure. Similarly,
‘defocusing’ the imaging channel introduces systematic errors
to the angular range of the field of view. This may cause
significant errors in the readings of a but, fortunately, usually
such error results in discontinuities in a(t) and thus can be
corrected by optimization as well. The latter procedure also
allows us to overcome the difficulties in the interpretation of
narrow resonances (�0.5 nm HWHM). Such resonances are
very sensitive to many factors, like image integration over
CCD exposition time or even slight droplet non-sphericity,
which results in readings of a visibly off the trend. The
average uncertainty of a(t) for DEG was estimated from
numerical experiments to be ∼ ± 8 nm (compare bottom inset
in figure 4). For experiments with water it was by a factor of
two larger. This error, although very small, is due to several
factors, of which we would like to address the main ones.
The uncertainty of the refractive index is the most important
source of error among uncertainties of the parameters of the
theory. For DEG, the manufacturer declared the refractive
index with the accuracy of ±0.001. This error in the index,
on average corresponds to ±3 nm uncertainty in a(t). The
maximal possible water content change of 0.03% corresponds
(assuming rapid component mixing, see [89, 90]) to ±0.1 nm
uncertainty in a(t). The total influence of the evaporation of
volatile impurities (maximal content change of <0.3% (DEG))
corresponds to less than ±1 nm uncertainty in a(t). Larger
systematic errors of the refractive index (e.g. in the case of
unreliable compound lot data) can be detected and corrected
with the procedures described above. The angular resolution of
a recorded image was (depending on the setup implementation)
∼±0.02◦. This error, on average, corresponds to ±2 nm
uncertainty in a(t). Similar a(t) uncertainty is associated with
the uncertainty of the angular range of the field of view.

5. Theory versus experiment

Some insight into the range of applicability or the advantages
of the different formulae encountered in the literature (i.e. (4),
(6), (11) and (12)) describing evaporation of a droplet, can be
gained from the analysis of the results of experiments on DEG

and water of the IF PAN group [43, 89] and the MD numerical
experiments of the IChF PAN group [25, 26].

Regardless of the details of the model it seems
indispensable to account for kinetic effects. In this work we
consistently use the effective diffusion coefficient (14) for the
transport of mass and effective heat conductivity (15) for the
transport of heat. As long as all the parameters can be regarded
as constants (in particular TL = const), equations (4), (6), (11)
and (12) take the same general form of

ȧ = P1

a/(1 + P3/a) + P2
. (19)

The kinetic effects are described with a single parameter
P2 ∼ 1/αC,T and P3 = �C, �T. It also follows, that the
equations for the transport of mass can be treated separately
from the equations for the transport of heat. Introducing the
characteristic length and time scales κ and τ (compare remarks
concerning formulae (14) and (15)) enables to express (19) in
a dimensionless form:

dκ

dτ
= −1

κ(1 + P3/(κP2)) + 1
, (20)

where κ = a/P2 and τ = −tP1/P
2
2 . Using the dimensionless

form often greatly facilitates comparing different evolution
cases (compare e.g. [91]).

It is worth noticing that the ratio P3/a controls the form
of the droplet evolution equation. Since �C, �T � a

for micrometre-sized droplets under STP conditions, P3 can
be rightfully neglected within experimental accuracy. This
conclusion is upheld by the analysis of the MD simulations
at the nanoscale presented further on. Thus, the considered
equations take a very convenient form:

ȧ = P1

a + P2
, (21)

or an even simpler dimensionless form:(
dκ

dτ

)−1

= −(κ + 1). (22)

Since the experimentally obtained a(t) can be represented
in ȧ(a) form and P1 and P2 remain constant, (21) does not
require integration. Since (ȧ)−1 is a linear function of a, P1 and
P2 can be found with a linear fit. It seems to offer a convenient
tool for the assessment of the model and measurement of the
thermodynamic conditions/parameters. The drawback of this
approach, which must be admitted here, is that the noise present
in the experimental data gets magnified due to differentiation.

In figure 5 we present the evolution of the DEG droplet
from figure 4, redrawn in (ȧ)−1(a) form, while a representative
example of water droplet radius evolution is shown in figure 6
in the same form. Both plots exhibit a region which is linear
(within the limits set by the noise present in the data) and
shifted versus the origin. It indicates that (21) applies and
the kinetic effects must indeed be accounted for (with (14)
or (15), respectively). The best fit for P2 = 0 (no kinetic
effects) is represented in figure 5 by a dashed line. On the other
hand considering the HKL (2.1) only (purely kinetic-limited
evaporation), as long as TL = const leads to ȧ = const, which
is obviously not the case. For the conditions corresponding to
figure 5 αC = 0.08, 1/ȧ � −9 s µm−1.
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Figure 5. Evolution of the diethylene glycol droplet from figure 4
presented in ȧ(a) form. Characteristic scales for the dimensionless
coordinates: aC = 1.38 µm and tC = 11.37 s. Strong undulations
result from differentiation in data processing. The non-linear region
for a < 2 µm signifies the strong influence of impurities (see also
figure 2). The dashed line corresponds to the best fit for P2 = 0 (no
kinetic effects), the dotted line to calculated P1 and fitted P2 and the
solid line to both fitted P1 and P2.

Figure 6. Water droplet radius evolution in ȧ(a) form.
Characteristic scales for dimensionless coordinates: aC = 1.16 µm
and tC = 0.81 s. Evaporation into (nearly) saturated water
vapour/nitrogen atmosphere at 20 ◦C and 998 hPa. The non-linear
region signifies the strong influence of impurities. The solid line
represents a linear, two-parameter fit to the apparently linear region
(21). Dashed and short-dashed lines correspond to two- and
three-parameter SRT fits, respectively (section 5.4). All fits
extended towards a = 0 with dotted lines.

5.1. Evaporation limited by diffusion of molecules in the
vapour.

In view of the considerations from section 2.1, negligible
Stefan flow (6) together with (14) may be written down as

ȧ = DM [p∞/T∞ − pa(TL)/TL] /(RρL)

a + D
√

2πM/(RTL)/αC
. (23)

Then, comparing equations (23) with equation (21) we find

P1 = DM [p∞/T∞ − pa(TL)/TL] /(RρL),

P2 = D
√

2πM/(RTL)/αC. (24)

If quantities comprising P1 (in particular D, p∞, T∞, TL

and pa(TL)) are known, only P2 must be fitted, yielding αC.
However, in general p∞/T∞ − pa(TL)/TL is a parameter
analogous to T∞ − TL in equations (11) and (12) (see also
below). Fitting a single parameter P2 is less vulnerable to
the influence of impurities than fitting both parameters. Since
the evaporation of a droplet is driven by the vapour density
gradient, as can be easily seen from (23), ȧ(a) is extremely
sensitive to changes of vapour density, both at infinity and
at the droplet surface. For instance, relative variations of
p∞ of the order of 0.1% induce noticeable effects, while
1% seems to be the limit of measurement accuracy in an
atmosphere close to STP conditions. The issue of the accuracy
of measuring the vapour density (vapour saturation, relative
humidity) has been raised e.g. in [73] and [39]. As the inherent
result of measurement techniques (for review see e.g [92])
partial vapour pressure is usually expressed in terms of the
saturated vapour pressure. Apart from the intrinsic accuracy of
empirical formulae for the saturated vapour pressure for many
compounds, and in particular for water under STP conditions,
the 0.1 K inaccuracy of vapour temperature measurement leads
to ∼1% inaccuracy in the saturated vapour pressure. However,
assuming that we know T∞, TL and pa(TL) as well as other
parameters with sufficient accuracy (which in many cases is
possible), we can find p∞/T∞ − pa(TL)/TL by fitting P1 in
the region free from influence of impurities and calculate p∞.
This constitutes a method of measuring the vapour pressure.

5.2. Evaporation limited by the transport of heat.

Similarly as for the transport of mass, (12) together with (15)
for the transport of heat can be written as:

ȧ = −λ (T∞ − TL) /(qeffρL)

a + λ
√

2πMair/(RTL)/(αTρcP)
, (25)

which corresponds to

P1 = − λ (T∞ − TL) /(qeffρL),

P2 = λ
√

2πMair/(RTL)/(αTρcP). (26)

In general, TL is experimentally accessible with very
limited precision (e.g. ±2 K in [44]). Even TL − T∞ is not
experimentally verifiable for the range of mK. On the other
hand, if the model is correct, the procedures described above
may serve finding TL −T∞ with high accuracy and thus finding
TL with accuracy limited only by the accuracy of T∞. Further
on, (25) should hold also when TL(t) is a function of time
(P1 �= const). This is applicable in the presence of impurities,
as long as they do not modify the major parameters. Thus,
it is possible to follow the evolution of TL some way into the
impurity-controlled region of droplet evolution.

Still, it must be kept in mind that TL is easily and accurately
accessible in MD simulations (shown in section 6).

5.3. Slower versus faster evaporation

For the conditions of our experiments, for both slower and
faster evaporation, TL � T∞ can be expected. Thus, TL = T∞
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can be used in equations (4), (6) and (7) as well as in (14)
and (15), though under no circumstances in (11) and (12).
Furthermore, since the droplets were micrometre-sized, the
influence of surface tension was negligible and pa(TL) =
psat(TL) = psat(T∞).

Slower evaporation. We shall address the results of the
experiments on slowly evaporating liquids first, since their
description is relatively simple. Here, the experimental
conditions and procedures allow us to additionally set p∞ = 0
and qeff = q. As it has been mentioned in section 2, the results
for DEG droplets correspond to Le � 1, so the equations
describing the transport of mass cannot be automatically
interchanged with equations describing the transport of heat.

The dotted line in figure 5 corresponds to a one-parameter
(P2) fit of (21) to the apparently linear part of the plot, with
P1 calculated from literature data [93, 94] and formula (24).
It yielded αC = 0.075. On the other hand, for the solid
line in figure 5, P1 was fitted together with P2. It yielded a
value higher than calculated by ∼4%. It seems to indicate
(in view of section 3.1) that the residual uncertainty of the
input data and parameters was higher than the possible effect
of impurities. Such a result is quite satisfactory and indicates
that after gathering sufficient statistics a reliable value of αC

could be found.
In the case of heat transport equations, a similar twofold

approach is possible:

(i) We can calculate P1 from formula (24), insert it into (26),
calculate TL, fit P2 only (the dotted line in figure 5) and
find αT. We expect that the value of TL, obtained in this
way, corresponds to ideal conditions when no impurities
or other similarly acting factors are present. This also
seems a better way for finding αT for a pure liquid. For
the case presented in figure 5 we found TL −T∞ = 4.1 mK
and αT = 0.12.

(ii) We directly fit P1 and P2 (the solid line in figure 5) and
find TL and αT from (26). This would correspond to real
TL and αT for a real, actual liquid. In this way we found
TL − T∞ = 4 mK and αT = 0.13.

Faster evaporation. The evaporation of water droplets (Le �
1.16) is essentially faster than the evaporation of droplets of
DEG. However, since the droplet evaporates into a highly
humid atmosphere, p∞ is significant. There remains an open
question whether we can still set qeff = q, which we do for
the lack of better data. Since qeff divides the experimentally
unknown T∞ − TL we cannot resolve this problem here.

Applying formula (26) to data presented in figure 6 (solid
line) yielded T∞ − TL = 0.15 K and αT = 0.15, while with
formula (24) (the same solid line) we found αC = 0.14 and
S = 0.996, where S is saturation or, in the case of water vapour,
relative humidity, p∞ = Spsat(T∞). Such a value of S is in
perfect agreement with our experimental technique. If p∞ is
very close to psat(T∞) and/or the droplet radius is very small,
the Kelvin relation (5) may also have to be utilized, but then
1/ȧ(a) becomes non-linear and (21) would fail. In such a case
a complete set of equations (6), (12), (14), (15) together with
(5) (as in section 3.1) and a multi-parameter fit, as described

in [43], must be used. In order to verify our results, though we
did not enter such a non-linear region, we performed the multi-
parameter fit. The results are in excellent agreement with those
from the analysis presented above, except for αT which was
found to be close to 1. Since αT is a second order parameter
in the multi-parameter fitting of the equation set, the method
presented above seems to be more reliable. However, as it has
been mentioned, most authors obtained values close to unity.

5.4. Statistical rate theory

Another way to tackle the problem of evaporation has been
consequently proposed by Ward et al (see e.g. [23, 36, 95]).
They applied SRT to non-equilibrium evaporation in a single-
component system. The evaporation probability of a molecule
is introduced and initially considered quantum-mechanically,
though quantum-mechanical calculations are circumvented by
introduction of the Boltzmann definition of entropy and the
kinetic theory description of equilibrium. It must be pointed
out that the equilibrium evaporation probability of a molecule
was assumed to be unity: αC = 1. We shall discuss this issue
later on in view of the experiments of Davidovits, performed
under the equilibrium conditions with isotopically labelled
molecules [55]. In the case of a droplet of water, the resulting
SRT formulae take the form:

ȧ = − 2η

ρL(T i
L)

psat(T
i

L)√
2πkT i

L

√
m sinh

(
�sLV

k

)
, (27)

where

η = exp

[
m

ρL(T i
L)kT i

L

(
P e

L − Psat(T
i

L)
)]

, (28)

�sLV

k
= ln

[(
T i

V

T i
L

)4
Psat(T

i
L)

P i
V

]
+ ln

[
qvib(T

i
V)

qvib(T
i

L)

]
(29)

+ 4

(
1 − T i

V

T i
L

)
+

(
1

T i
V

− 1

T i
L

)

×
3n−6∑
l=1

[

l/2 +


l

exp(
l/T i
V) − 1

]

+
m

ρL(T i
L)kT i

L

(
P i

V +
2γ

a
− Psat(T

i
L)

)
,

qvib(T ) =
3∏

l=1

exp [−
l/(2T )]

1 − exp (−
l/T )
(30)

and P e
L must satisfy

P e
L − 2γ

a
= ηPsat(T

i
L). (31)

T i
L and T i

V are the interfacial liquid and vapour temperatures,
P i

V is the pressure in the gas at the interface, P e
L is the

liquid pressure at equilibrium, n is the number of atoms in
the evaporating molecule and 
l is the molecular vibrational
temperature.
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Figure 7. The evaporation of water droplets into water vapour,
from [36], presented in 1/ȧ(a) form. Characteristic scales for
dimensionless coordinates: aC = 453 µm and tC = 4500 s, taken as
averages over the presented data sets. All these experimental data
seem to conform to (21) with non-zero P2: linear extrapolations
towards a = 0, shown as dotted lines, are not pointing towards (0,0),
while SRT predicts otherwise.

The applicability of SRT to the evaporation of an argon
droplet into its own vapour will be discussed in section 6. By
definition, application of this model to the evaporation of a
water droplet into standard air or nitrogen may require some
adaptations. Here we tried to apply this model as it stands.
However, apart from fundamental issues, in the case of our
experiments with levitated droplets neither T i

L, T i
V nor P i

V were
accessible. However, for higher pressures (compare [28, 36]),
the temperature discontinuity at the interface is expected to be
negligible and we assumed T i

L = T i
V. Apart from that, we

assumed P i
V = p∞ = Spsat(T∞). Fitting the above model

to the data presented in figure 6 yielded T i
L = 292.66 K and

S = 0.97, which are in reasonable agreement with the results
presented in section 5.3 (T i

L = 292.96 K, S = 0.996 and αC =
0.19), though the functional dependence presented in figure 6
(dashed line) seems totally wrong. This can be partially
improved by introducing αC as a third fitting parameter. Then
we obtain T i

L = 292.92 K, S = 0.990 and αC = 0.19 which
are in excellent agreement with our results and the functional
dependence is reproduced better (the short-dashed line in
figure 6). However, the model predicts non-linear 1/ȧ(a) → 0
for a → 0 which was illustrated in figure 6 for both sets of
optimized parameters, while the results of our experiments
suggest otherwise. Furthermore, the results of Ward et al in
the 1/ȧ(a) representation (see figure 7) appear also to be linear
and do not point towards (0,0). The model is nearly linear in a
form of 1/ȧ ∝ a when the term �sLV /k (linked to the entropy
change associated with the molecular transition through the
interface; formula (30)) is small. This happens when e.g. the
temperature at the interface is nearly continuous. However,
(27), representing the model, never takes the form of (21).
It indicates that additional factors (perhaps just the presence
of impurities) should be considered. Since the functional
dependence of [36] data coincides with equations (21) and
(19), we may find the predictions of Maxwellian theory with
a kinetic extension. We shall start with (21) as evidently

reproducing the data. In the case of evaporation into vapour,
there is no Stefan flow and in the case of (21), formulae
(24) and (26) can be used. We calculated the self-diffusion
coefficient with equation (18) of [36], taking the temperature
of the reservoir as the reference temperature: Tref = T∞.
We calculated the thermal conductivity of water vapour with
the equation given in [96] for the same temperature. We
considered test 2 of [36] (initial pressure: 2880 Pa, reservoir
temperature T B = 300.02 K and T B − T L

i � 3 K) and found
T∞ − TL = 4.3 K and αT = 0.007. Then, using TL, we
obtained p∞ = 2770 Pa. While the values of T∞ − TL and
p∞ are reasonable, αT seems much too low. Since, under the
considered thermodynamic conditions the mean free path is
relatively long, it may be expected that (19) should be used
instead of (21). However, the smallest χ2 is obtained for
P3 = 0. Thus, we conclude, that the droplet was much too
large for kinetic effects to manifest in the Maxwellian model
and a reliable value of αT could not be found.

6. Molecular dynamics simulations

The models discussed in the previous sections have been
derived on the basis of a continuous description of fluids with
kinetic corrections to describe the evaporation of micrometre-
sized droplets. In this section we examine these models by
comparing their results with those of the computer simulation
of the evaporation of nanodroplets. The simulation, where
we only assume a form of intermolecular potential, is a good
tool to model droplet evaporation because all conditions of
the simulated process are controlled and all quantities that
characterize the process can be determined independently. The
simulation should be performed under conditions as close
as possible to those occurring in experiments. However
the number of molecules in a computer simulation is many
orders of magnitude smaller than the number in an experiment.
Therefore a number of conditions have to be satisfied before
we can compare the physical results of computer simulations
to those from experiments. Some minimum requirements are
listed below:

(i) In a typical experiment the droplet is immersed in a
finite container. The boundaries are kept at constant
temperature T∞. The distance from the droplet centre
to the boundary R∞ is very large in comparison to the
nanoscale study of computer simulations. We assume
that far from the droplet surface the gas parameters do not
change during the evaporation process. In the computer
simulation R∞ cannot be so large, however it is possible
to get the number of molecules large enough to fulfil this
condition approximately. Landry et al [40] proposed the
method in which the gas parameters are kept constant
by removing the gas molecules. Even in such a case
R∞ cannot be low, since the distance from the droplet
surface to the boundaries divided by the mean free path,
nrat = (R∞ − a)/ la , should be large enough to assure
that heating the gas at the boundary does not influence the
evaporation process directly.
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(ii) In a typical experiment the droplet radius is equal to
a few micrometres. As a result, the influence of the
width of the interface on time evolution is very low. The
resulting minimum requirement for the simulation is that
the droplet radius should be much larger than the width of
the interface. Considering the values of the surface width
parameter for the Lennard-Jones (LJ) liquid [97], we can
assume that a should not be significantly lower than 10σ

where σ is the LJ length parameter.
(iii) In experiment a/R∞ can be set to 0, while this value

is finite in computer simulations. Therefore we have to
account for the finite size of the system in any comparison
with experiment.

The above conditions ((i) and (ii)) are fulfilled only if
the total number of molecules N in the simulation is large.
Most simulations that can be found in the literature concern the
evaporation of very small LJ droplets [40, 98, 99]. The results
were very interesting but N , not higher than a few thousand,
was much too low to fulfil both (i) and (ii). Walther and
Koumoutsakos [41] (WK) performed simulations where N was
an order of magnitude larger. They modelled the evaporation of
the LJ atom droplet at supercritical conditions and concluded
that the temporal evolution of droplet radius a(t) obeys the
classical ‘D2 evaporation law’ (as (7) or (12)):

da2

dt
= const. (32)

They used formula (11) under the condition of Le = 1 to fit
their data. The number of LJ atoms in the droplet applied by
WK was enough to satisfy the condition (ii). The simulation
box was also large, but nrat amounted only to about 2, which
seems to be too low.

Hołyst and Litniewski [25] (HL) have presented the results
of large scale (N over 2.6 × 106) computer simulations of
evaporation of the LJ liquid droplet surrounded by the vapour,
all enclosed in a spherical vessel of radius R∞ � la . The
boundaries were kept at the constant temperature T∞ > Tc

where Tc was the critical temperature. The evaporation was
simulated for different conditions with TL/Tc varying from
0.678 to 0.955. The total number of LJ atoms was large enough
to satisfy both (i) and (ii). R∞/a was always larger than 7
and nrat was never lower than 10. HL have also proposed
how to take into account the finite size of the gas container
(condition 3). In a typical experiment the heat is transferred
from R∞ to the droplet surface and R∞ is so large that a/R∞
can be assumed to be 0. In computer simulations R∞ is not
so large and its value influences the obtained results. The
influence can be taken into account as in the hydrodynamic
model [28, 32] in which the result of the integration of the
heat transport equation (HTE), as e.g. (8), depends on the
boundaries: both on a and on R∞. Simplifying HTE [28],
the ‘D2 law’ ((32)) is fulfilled only if a/R∞ → 0. On the
other hand, (32) is fulfilled for all R∞ > a if we replace a

with [25]:

a∗ = a

(
1 − 2a

3R∞

)1/2

. (33)

This result strongly suggests that if a/R∞ cannot be neglected,
the time evolution of the droplet radius of an experimental

system is better described by a∗(t) than a(t). In this way we
satisfy condition (iii) which is necessary to compare the results
of experiments to those of computer simulations.

In the following, we use the computer simulation data from
the HL work (listed in table I in [25]) to test the theoretical
formulae for da∗/dt . In the simulations, a was defined as the
distance from the droplet mass centre to the point where the
density is equal to half of the mean density of the droplet.
All the results given below are expressed in units of argon
assuming the mass m = 40 a.m.u. and the LJ parameters: σ =
3.4×10−10 m, ε = 140.5k = 1.939×10−21 J. The temperature
scale is obtained by adopting the critical temperature for the
LJ potential truncated at rc = 2.5σ (Tc = 1.08 in the reduced
units [97]) equal to the temperature for argon (151.75 K).

Using the computer simulation data of HL [25] we
estimated the gas density just above the droplet surface ρa . We
determined the diffusion coefficient in the vapour D and the
heat capacity cp for the gas density ρa by performing additional
short computer simulations on the 125 000 particle systems
using the constant energy and volume molecular dynamics
(MD) method [100]. The values of D at ρa , further denoted as
Da , were determined using the Einstein formula [100] for all
values of liquid temperature considered here. The specific
heat has been estimated for two state points: cp = 2.8R

for ρ/m = 0.165 nm−3, T = 102.7 K and cp = 3.7R

for ρ/m = 0.832 nm−3, T = 128.1 K. The values of cp

together with λ from the supplementary information to the
HL paper [25] gives Le = 1.06 and 0.92, respectively, which
shows that in our case, the assumption Le ≈ 1 is a reasonable
approximation.

First, an important result that we have found analysing
the simulation data is that the time evolution of the inverse of
da∗/dt in a quasi-stationary regime (the second part of the time
evolution) is a strictly linear function of a∗ (formula (21)). We
fitted (da∗/dt)−1 with the function ffit(a

∗) being the inverse
of the general formula (19):(

da∗

dt

)−1

= ffit(a
∗) = − 1

P1

(
a∗

1 + P3/a∗ + P2

)
, (34)

where now P1, P2 and P3 � 0 are adjustable constants. The
curves resulted from the minimization for selected data are
shown in figure 8 ((da∗/dt)−1 versus a∗). Initially (large
a∗ in figure 8) the system was heated at the boundary and
a sudden change of temperature resulted in sound waves
travelling in the system. For this time period (34) was not
valid. For the rest of the time, the evaporation process was
well described by the linear dependence of (da∗/dt)−1 versus
a∗ (figure 8). According to (33) da∗/dt = (da/dt)[1 −
2a/(3R∞) + O(a2/R2

∞)]. The differences in the quality of
the fit (determined by χ2) for (da/dt)−1 and (da∗/dt)−1 were
non-significant. The only, physically important, difference
was that the values of P1 for a∗ were higher than that for a by 13
to 20% of the relative value. The presence of P3 in (34) did not
improve the quality of the fit. For the temperature of the liquid
droplet TL < 122 K the minimization always gave P3 = 0. For
larger TL, P3 was usually non-zero but the difference between
the corresponding χ2 and that for P3 = 0 was always non-
significant. Following the discussion on the meaning of �C
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Figure 8. The inverse of da∗/dt versus a∗. The empty circles give the minimization data obtained by numerical differentiation of a∗(t) from
the simulation. The solid line gives ffit(a

∗) from the minimization of P1 and P2 for P3 = 0 in (34). Figures (a), (b), (c) and (d) give the
results for the simulations for n0 = 1, 3, 6 and 8 (table 1), respectively. The characteristic scales for dimensionless coordinates are: (a)
aC = 6.1 nm, tC = 19.1 ns; (b) aC = 2.16 nm, tC = 1.92 ns; (c) aC = 0.15 nm, tC = 2.7 ps; (d) aC = 0.11 nm, tC = 3.1 ps. In the case of (a)
the mean free path in the gas phase is comparable to the radius of the droplet (see n0 = 1 in table 1). The highly non-linear data for high a∗

(a > amax (see table 1)) correspond to the initial transient non-stationary regime related to travelling sound waves [25] and are not taken into
account in the minimization.

L

Figure 9. The ratio (RATIO; solid dots) of χ2 from the fit (see (34))
for P3 = la to χ 2 for P3 = 0 versus TL for the simulations from
table 1. The horizontal line corresponds to RATIO = 1. The quality
of the fit with (34) is the best for P3 = 0; for any non-zero P3 the
quality of the fit deteriorates. Therefore, not only in experiment but
also at the nanoscale, this parameter can be neglected in (19)
and (34).

(see (14)) we compared the minimization results for P3 = 0
and P3 = la . The ratio of χ2 for P3 = la to χ2 for P3 = 0
versus TL is given in figure 9. From this analysis we see that
non-zero P3 makes the quality of the fit worse.

The values of P1 and P2 are presented in table 1. Table 1
comprises also the maximum amax and the minimum amin

values of a for which the fits were done, the mean free path

la and the diffusion constant Da for the gas at the liquid
temperature TL and the density ρa just above the droplet
surface. The mean free path was estimated from [101]:

la =
(
π

√
2σ 2ρa

)−1
. (35)

The simulation of HL [25] allows us to test the theoretical
models discussed in the previous section. First we compare
the values of P1 obtained from (34) with the theoretical value
from (12). In the theoretical formulae we assumed TL as time
independent. This is only an approximation. In analysing
the simulation data we found that the droplet temperature
slightly decreased when a became lower than about 3.5 nm.
The temperature decrease at a = amin never exceeded 3% of
the relative value of the temperature change. The values of amin

and amax from table 1 clearly show that the error associated with
the assumption of TL = const is negligible.

Hołyst and Litniewski simulated a one-component system,
so the theoretical prediction of P1 reads, according to (12) and
(26), as

P
pred
1 = −λ (T∞ − TL)

ρLqeff
. (36)

Table 2 showsP1 andP
pred
1 . The relative error δP1 = P

pred
1 /P1.

The approximation for P1 appears to be very reasonable. |δP1|
exceeds 0.1 only if both TL and (T∞ − TL) are high. We
found also that the absolute values of the prediction errors are
significantly lower for a∗ than for a, which confirms that if we
compare computer simulations with experiment, the droplet
radius should be redefined with (33).
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Table 1. The computer simulation data, the minimization results and the parameters for the simulations from [25]. The sequence numbers
n0 correspond to those from table 1 of [25]. P1 and P2 (see equations (21) and (19)) are obtained from the minimization of ffit(a

∗) (formula
(34)) for P3 = 0. ρa is the density of gas close to the droplet surface and Da is the diffusion coefficient obtained from the simulation at ρa

and TL. TL is the liquid droplet temperature during evaporation (almost constant as explained in the body of the text) and ρL is the liquid
mass density. T∞ is the temperature at the boundary of the container. amin and amax give the minimum and maximum values of the droplet
radius a used during the minimization (see also figure 8) and la is the mean free path in the gas phase evaluated from (35).

TL T∞ ρL/m ρa/m Da P2 P1 la amin amax

n0 (K) (K) (nm−3) (nm−3) (mm2 s−1) (nm) (nm2 ns−1) (nm) (nm) (nm)

1 102.7 175.6 19.7 0.216 0.726 6.10 1.95 9.00 3.2 11.4
2 107.9 175.6 19.2 0.318 0.517 3.41 2.07 6.12 2.4 11.0
3 114.6 175.6 18.5 0.496 0.349 2.16 2.43 3.92 2.5 10.3
4 121.3 175.6 17.7 0.725 0.252 1.03 2.67 2.69 2.1 7.7
5 128.1 175.6 16.8 1.119 0.174 0.21 2.98 1.74 2.3 7.9
6 135.3 245.9 15.8 1.399 0.145 0.15 8.46 1.39 2.6 7.3
7 142.9 351.3 14.4 1.743 0.123 −0.03 16.90 1.12 2.4 8.0
8 136.4 175.6 15.6 1.705 0.122 0.11 3.93 1.14 2.5 10.2
9 144.9 245.9 13.8 2.099 0.104 0.01 13.12 0.93 3.4 9.7

Table 2. The comparison of P1 from the minimization with ffit(a
∗)

(see table 1) and the theoretical value of P1 (P pred
1 from formula

(36)). The approximation for P1 appears to be very reasonable. The
relative error in P

pred
1 exceeds 0.1 only if both TL and T∞ − TL

are high.

TL T∞ − TL P1 P
pred
1

n0 (K) (K) (nm2 ns−1) (nm2 ns−1)

1 102.7 72.9 1.95 2.09
2 107.9 67.7 2.07 2.21
3 114.6 61.0 2.43 2.45
4 121.3 54.4 2.67 2.72
5 128.1 47.5 2.98 3.05
6 135.3 110.6 8.46 8.24
7 142.9 208.4 16.90 19.29
8 136.4 39.2 3.93 3.54
9 144.9 101.0 13.12 12.01

As it has been already mentioned, SRT predicts ȧ in a
form different from (19). Table 3 compares ȧ from the MD
simulation with that predicted by SRT for a = 20σ = 6.8 nm.
SRT predicts a non-physical result: ȧSRT is positive i.e. the
droplet grows in time instead of decreasing its size. For the
conditions given in table 3, pV is significantly higher than
psat(TL). The first term in formula (30) becomes strongly
negative and �sLV/k changes sign. It may be confirmed by
an observation that significantly better results are obtained by
setting up false pV = psat(TL). Then, the prediction given by
ȧSRTEQ is not so poor if only TL is low enough. SRT seems to
gain accuracy for moderately non-equilibrium processes (see
T∞ − TL in table 2).

We are not aware of any theory that predicts the value
of P2 successfully in the whole range of temperatures and
densities. Assuming Le ≈ const, (26) predicts P2 proportional
to DaT

−1/2. Taking into account (35), the assumption that P2

is proportional to la/a [25] gives a very similar relation since
ρaDaT

−1/2 is a very weakly changing quantity (see table 1).
In fact, the dependence of P2 on thermodynamic variables is
more complex. Assuming Le = 1, (26) gives, the following
relation between αT and P2:

αT = Da

P2

√
2πM/(RTL). (37)

According to figure 9, αT calculated from formula (37)
as a function of ρa splits into two regions, those of high
and low values. An important result that we have found
when analysing the simulation data is that the jump in α−1

T ,
which is seen in figure 10, is strictly correlated with the
temperature discontinuity at the droplet surface that is shown
in the HL paper [25]. The effect is evident if we compare
the two panels of figure 10. Therefore we conclude that the
high value of α−1

T found in experiments is a sign that kinetic
effects are important and that their origin is in the temperature
discontinuity measured for the first time by. Ward and his
group [13]. For the continuous profile of the temperature
across the interface P2 = 0 and consequently α−1

T = 0.

7. Summary

The temporal evolution of the radius of evaporating droplets
follows (21), irrespective of whether it pertains to a single
component (evaporation of the liquid into its own vapour)
or multi-component system (evaporation of a liquid into a
gas or vapour of another substance). This equation has two
parameters: P1 and P2. P1 is well described by the continuous
irreversible thermodynamics approach in the form of formulae
(24) or (26). P2 is a correction arising from the kinetic theory
of gases (again, see formulae (24) and (26)). The form of P2

involves unknown evaporation coefficients. In the case of an
evaporation of a liquid into its own vapour, P2 is non-zero only
if there is a temperature discontinuity at the interface.

The temperature discontinuity appears always for a
sufficiently small density of the vapour phase. This fact
indicates that the temperature jump at the interface is due
to the momentum/pressure equilibrium. The explanation
is very simple: for diluted vapour the pressure is given
by the product of the vapour density and temperature. If
the density is too low, only sufficiently high temperatures
would guarantee momentum/pressure equilibrium. Thus
equilibration of pressures (including the curvature term in
the Laplace law for droplets) during evaporation is the main
mechanism for the temperature discontinuity at the liquid–
vapour interface.
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Table 3. The comparison of ȧ for a = 6.8 nm from the HL simulation (index sim) with the value from the SRT model for pV from the MD
simulation and for the assumption of pV = psat(TL) (indices SRT and SRTEQ, respectively). The surface tension γ and the saturation pressure
psat(TL) are taken from [97].

TL γ psat(TL) pV ȧsim ȧSRT ȧSRTEQ

n0 (K) (mJ m−2) (MPa) (MPa) (nm ns−1) (nm ns−1) (nm ns−1)

1 102.7 8.26 0.340 0.414 −0.151 0.168 −0.134
2 107.9 7.10 0.502 0.597 −0.203 0.220 −0.164
3 114.7 5.68 0.789 0.893 −0.271 0.222 −0.201
4 121.3 4.26 1.171 1.327 −0.341 0.406 −0.221
5 128.1 2.96 1.693 1.840 −0.425 0.374 −0.223
6 135.3 1.84 2.389 2.664 −1.218 0.898 −0.203
7 142.9 0.83 3.315 3.774 −2.495 1.710 −0.141
8 136.4 1.55 2.514 2.649 −0.568 0.378 −0.183
9 144.9 0.64 3.588 3.897 −1.927 1.172 −0.123

(a)

(b)

Figure 10. (a) The inverse of αT constant calculated from (37) as a
function of the gas density above the interface, ρa . The vales of P2

are taken from table 1. αT parameter is usually assumed constant in
experimental studies. Here we show that its value depends on the
gas density and therefore can vary from system to system depending
on the thermodynamic parameters of the vapour phase. For a large
vapour density this parameter becomes infinitely large which means
that the concept of kinetic-limited transport (the ballistic motion of
molecules) is not adequate. For lower values of ρa , the value of αT

is much more reasonable however the parameter cannot be simply
interpreted as the probability [45]. Moreover the change of αT is
correlated with the discontinuity of temperature at the interface. For
α−1

T ≈ 0 the temperature is continuous at the interface (see
figure 10). As αT is related to the kinetic-limited transport we
conclude that such transport significantly affects evaporation only
for a low gas density correlated with temperature discontinuity at the
interface. Such behaviour is characteristic for most experimental
cases as discussed in the experimental section and as shown in the
experiments of Ward [13, 36]. (b) Open circles: the difference
between the liquid temperature TL and the gas temperature at the
interface Tvap (temperature jump at the interface, see [25]) as a
function of the vapour density ρa . Solid dots: the temperature jump
at the interface is inversely proportional to the density of the vapour
phase (below some characteristic density in the system as shown in
the figure). For a sufficiently high vapour density the temperature is
continuous at the interface i.e. TL = Tvap.

The evaporation is in the first place driven by the heat
flux from the vapour phase. However lowering the vapour
density would finally lead to the evaporation scenario being
completely dominated by kinetic effects (not fully accounted
for by formulae (26), where the kinetic term is only the

correction to the main part). An extreme case is evaporation
into vacuum, when the momentum flux density is equal to the
liquid pressure and governs in this way the mass flux [26, 27].
In the latter case there is no heat flux from outside and during
evaporation the droplet lowers its temperature.

For multi-component systems the situation is different and
the scenario of evaporation changes, despite the fact that the
same (21) is valid as in the single-component system. First
of all the vapour has high density and momentum/pressure
equilibrium is satisfied easily e.g. for water evaporating into
the air. Therefore momentum/pressure equilibrium is not the
constraint which governs density and temperature profiles as in
the single-component system. We believe that the scenario of
evaporation is as follows: the droplet is originally at the same
temperature as the vapour/ambient atmosphere. After a short
time the droplet lowers in temperature because of evaporation
until the heat flux from the surrounding gas matches the
enthalpy of evaporation. The temperature difference between
the gas and the droplet is usually small and most probably
the temperature is simply discontinuous at the interface. The
temperature difference between the vapour and the droplet
is defined by the evaporation mass flux and enthalpy of
evaporation. The mass flux is most probably given by (13)
once again with an unknown evaporation coefficient αC.

It is feasible to find a reliable value of αC (if necessary
corrected for a higher droplet temperature drop). The results
we obtained for water versus temperature are in excellent
agreement with those obtained with a fundamentally different
method of the BC/ARI group. The value of αT is significantly
lower than obtained with a multi-parameter fit and by most
authors. Therefore we conclude that the problem of the
evaporation coefficient is still open especially because there
is no consistent theory which would explain its origin. The
evaporation coefficients should be explained on the basis
of equilibrium simulations of liquids in contact with their
vapours. The experiments of Davidovits (see e.g. [66]) show
that αC is smaller than 1. It is not a surprise because the flux
leaving the liquid surface is matched by a flux which reaches
the surface of the liquid and is not reflected. If we take a
classical Hertz–Knudsen equation for the mass flux, it should
be multiplied by a factor which cuts out the flux that is reflected
at the interface.

The experiments yield a number of specific conclusions:
Accounting for kinetic effects is indispensable for droplets of
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the radius a < 5 µm evaporating into a standard atmosphere,
regardless of the evaporation rate. Neither a diffusion only,
nor kinetic only approach is successful. As long as 1/ȧ(a) is
linear, it is sufficient to use the transport equations as given by
(21). �C and �T can be neglected. Such a method is simple
and quick. Accounting for the effects of temperature change
with time turned out to be not necessary even for relatively
fast evaporating droplets. The effect of surface tension is
substantial only for the droplets evaporating into their own
nearly saturated vapour. In dealing with pure liquids, the
effects of impurities can be avoided by careful handling during
experiment and using the strictly linear region of 1/ȧ(a) data
during data processing. It is possible to find the value of
p∞ (or relative humidity) and (possibly) TL with the accuracy
determined mostly by the accuracy of T∞. As long as the model
is correct it is a method of remote temperature and humidity
measurement.

Finally we have investigated in detail the SRT theory
of Ward et al [23]. According to experimental results
and computer simulations the theory needs some revisions.
However, it seems to gain accuracy for moderately non-
equilibrium processes. In particular SRT does not reduce to
(21) which describes correctly the evaporation in single- and
multi-component systems.

We conclude that it is indispensable for further progress
in the physics of evaporation to run large scale molecular
dynamics simulations at equilibrium to determine the
evaporation coefficients αC and αT and relate them to
intermolecular potential and thermodynamic parameters (see
recent [102]). These coefficients affect the coefficient P2 in
(21) in the case of evaporation in a single-component system
(see also equations (24) and (26)) and also the temperature
difference in (26) (and consequently P1) in the case of
evaporation in a multi-component system. They are also
important for the description of the smooth transition between
the case of evaporation into the vapour of high pressure and
the evaporation into vacuum, where it has been exactly shown
[26, 27] that αC = 2 in (13). The current paradigm in science
is focused on states rather than processes themselves, but most
certainly the future belongs to the latter. We hope that our
manuscript can guide future studies in this direction.
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