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a b s t r a c t

The change of the scattering properties of sodium, gold and silver spherical particles

with size is discussed in the context of surface multipolar plasmon resonances. The

presented surface plasmon size characteristics are abstracted from the quantity which is

observed and deliver multipolar plasmon resonance frequencies and plasmon damping

rates in the form of a continuous function of particle radius. The performed analysis of

the plasmon dispersion relation is analogous to the problem of surface plasmon

localized at a semi-infinite, flat metal/dielectric interface.

Correlation between the multipolar plasmon resonance parameters, and the

spectroscopic optical properties of conductive nanoparticles appearing as peaks in the

measurable light intensities is analyzed. We discuss the fact, that such peaks arise from

interference of all the electromagnetic fields contributing to the measured intensity, and

not solely to the fields due to surface plasmon multipolar modes.

We describe the results of light scattering experiment in orthogonal polarization

geometries with use of spontaneously growing sodium droplets. The polarization

geometry of the experiment allows for distinct separation of resonant contribution of

dipole and quadrupole plasmon TM mode contributions to the measured intensities as a

function of size.

Predictions concerning size characteristics for dipole and quadrupole plasmons are

compared with the results of light scattering experiments using spherical sodium

droplets (our results) and gold and silver particles in suspension [other authors:
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1. Introduction

Surface plasmon (SP) excitations are known to contribute to exceptional optical properties of metal nanostructures.
Excitation of SP oscillations with light at metal–dielectric interface is a fascinating phenomenon of great potential
application in nanophotonics, biophotonics, sensing, biochemistry and medicine [5].

Excitation of surface plasmons at optical frequencies, guiding them along the interface, and coupling them back into
freely propagating light are processes of great interest for the manipulation and transmission of light at the nanoscale. The
example can be nondiffraction-limited guiding of light fields via a linear chain of gold nanoparticles: spheres [6–9] and
nanowires [10]. Metallic nanostructures can serve as potential building blocks for the fabrication of materials with negative
refractive index (metamaterials).

An important application of localization and thus enhancement of the near electromagnetic fields due to plasmon
excitations is surface enhanced Raman spectroscopic (SERS) technique [11,12]. It allows detection of trace amount of
molecules, microorganisms or living cells adsorbed at the surface of metallic nanostructure illuminated with light at a
wavelength corresponding to the plasmon resonance frequency. Applications of SERS in biology, biochemistry and
biomedicine are of great importance. Examples can be the spectroscopy of single bacteria of Escherichia coli [13] or of
neurotransmitters [14]. Plasmons excited in metal nanoshells bound to tumor proteins are tested in photothermal tumor
therapy. The large effective scattering cross-section of individual noble metal nanoparticles at plasmon resonance
condition, as well as their nonbleaching properties have significant potential for single molecule labeling based biological
assays [15–17].

Thus, there is a substantial and broad interest in the fundamental properties of SP propagation in nanoscale
structured matter. Intrinsic properties of SP are determined by the respective dispersion relations. In contrast to bulk metal
with a flat surface, the excitation of collective motion of free electrons at the surface of a metallic nanoparticle of a curved
surface is possible by direct optical means. Metallic structures smaller than the wavelength of incident light demonstrate
fascinating optical properties which are highly dependent on the particle material, size and shape. In contrast to the
dispersion relation for an SP at a planar metal/dielectric interface, which is well-investigated theoretically and
experimentally, [18–20], the dispersion relation at a curved surface is much less explored [20,21]. Such relation is
important from a fundamental perspective but may also provide exciting ways of exploiting the optical properties of
nanoparticles.

Recent progress in synthesis and functionalization of noble metal nanoparticles (e.g. spherical gold and silver
standardized nanospheres of well-defined radii are available commercially) and nanorods [22–24] caused a rapid growth in
the number of studies of surface plasmon properties in free (or colloidal), and supported nanostructures. The assignment
and interpretation of multipole resonances in nanorods have been usually done indirectly, on the basis of the standing
wave picture [25,26] and DDA calculations [27]. However, the DDA algorithm does not include an explicit multipole
representation. Therefore, there are only limited data on the multipole plasmon resonances in nanorods [27,28], and
nanoprisms [29]. Surprisingly, the same applies to nanospheres [1–3].

In many applications, the size characteristics of multipolar surface plasmons are crucial. The spherical nanoparticle is
geometrically the simplest nanostructure of single parameter defining the size. A spherical symmetry of the nanostructure
enables rigorous description of plasmon features within the framework of classical electrodynamics. That allows, in
principle, relatively simple analysis of the dispersion relation of surface plasmons and their size dependent multipolar
features. In spite of this geometrical simplicity, there are few direct data reporting size dependence of plasmon
characteristics resulting from the dispersion relation for particles of various metals [30–33].

Our modeling of plasmon size characteristics is based on surface plasmon dispersion relations. This allows the
description of plasmons as an intrinsic property of a metal nanosphere embedded in a dielectric medium, which does
not depend on the measured quantity. That property allows for resonant excitation of collective oscillations of free
electrons at the interface. When excited, a metal sphere acts as radiating antenna at characteristic radius dependent
frequencies. In order to find plasmon size characteristics we look for the eigenmodes of self-consistent, divergence
free Maxwell equations fulfilling continuity relations at the sphere boundary. Conditions for existence of transverse
magnetic solutions (with the nonzero normal to the interface component of the electric field) define complex
eigenfrequencies of the fields Ol with l ¼ 1;2;3; . . .. ReðOlÞ ¼ o0lðRÞ define the frequencies of the field, which can
couple to collective electron oscillations (plasmons) in a sphere of radius R. The discussion is concentrated
on size characteristics of the plasmon oscillation frequencies and their manifestations in some quantities, that
can be measured in far and near field. The size-dependent damping rates ImðOlÞ ¼ o00l ðRÞ [30,31] are not discussed in
this paper.

The notion of plasmons is connected with transverse magnetic surface electromagnetic fields, while light intensities
(irradiance), that can be measured, are inevitably composed of both TM and TE components of different polarity l: Both
contributions interfere forming a complex pattern depending on the geometry of observation and on the size of a particle in
comparison with the wavelength of the light being scattered. The result of the negative interference can result in
cancellation or smearing out of plasmon electromagnetic field contribution to the intensity of light scattered in a given
direction. It is why the maxima in quantities such as the back scattering cross-section or a total extinction cross-sections,
calculated on the base of Mie scattering theory, can differ from the plasmon resonance position, as derived from the
dispersion relation for the plasmon electromagnetic fields.
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Our analysis of plasmon size characteristics concerns sodium (the best free-electron metal used as a elementary check
of a model), gold and silver (noble metal) spherical particles up to a particle size of about 300 nm in diameter. Noble metal
nanoparticles have great potential application. They can serve as building blocks for optoelectronic devices, for guiding
light, data storage, ultra-fast switching, sensors, etc. In gold and silver nanoparticles, plasmons can be excited at
frequencies that can be tuned through the visible range. Knowing size characteristics of dipole and higher polarity plasmon
resonance frequencies and plasmon damping rates, it is possible to tailor plasmon features according to the application in
mind by choosing the appropriate size and material of the nanosphere and also the environment it resides in. Our study
results in the ready-to-use, continuous functions of particle radius, which can be used to plan parameters of plasmon
resonances in practical applications by choosing the appropriate size of the particle in the optically known dielectric
environment. Our results could be especially useful for example in SERS spectroscopic technique, where data concerning
the enhancement of electric field intensity (and not the radiation intensity) are of importance.

Our predictions concerning plasmon resonance frequencies are compared with several experimental observations. This
comparison includes our experimental results for free sodium particles, where we studied the smooth change of their sizes
with time up to a macroscopic droplet of the order of the wavelength of light. Our expectations concerning plasmon
resonance frequencies in gold and silver nanoparticles are compared with the results obtained from the light scattering
spectra reported in [1–3].
2. Mie scattering theory and the eigenvalue problem for the sphere

Since the first systematic study of Faraday [34], it is known, that even the merest or slight variation in the size of (gold)
particles gives rise to a variety of colors of colloidal particles. As shown by Mie [35], elastic scattering of light and not
absorption, is the process defining the spectacular color effects observed in suspensions of spherical metal (originally gold)
particles with radii above tenths of nanometers. The contemporary illustration can be the image from dark-field
microscope representing the result of scattering of white light by 30 nm silver nanoparticles and by clusters of
nanoparticles of different sizes (see [36]).

Mie scattering theory allows describing the scattering of a plane monochromatic wave by a homogeneous sphere
surrounded by a homogeneous medium for any particle radius and of any material. It deals with the problem of the
continuity of the tangent component of the total electromagnetic fields fulfilling Maxwell’s equations outside and inside
the sphere. The fields outside the sphere include the incident field of the plane light wave arriving from a distinct source
not included in Maxwell equations. The problem is solved in spherical coordinates, where electromagnetic fields are
expressed as infinite sums of the partial electromagnetic waves of the ‘‘electric’’ (or transverse magnetic, TM) and
‘‘magnetic’’ (or transverse electric, TE) type, that are reciprocally orthogonal [37–40]. However, Mie scattering theory does
not deal with the problem of surface electron density oscillations (surface plasmons) coupled to surface localized
electromagnetic fields, although usually positions of successive peaks appearing in light scattering spectra of conducting
particles obtained with Mie theory, are interpreted as directly related to positions of surface plasmon resonances.

In the description we use, spectrally selective optical effects in scattering properties of metal nanoparticles are not due
to elastic scattering of the incident light nor to absorption, but rather to the elementary, intrinsic property of a conducting
spherical nanostructure embedded in a dielectric medium that can manifest in the optical response to the external
electromagnetic field. A conducting sphere is treated as an radiating antenna (a resonant circuit), that can be can be
characterized by some discrete, resonance frequencies o0lðRÞ, defined by a particle radius R for given metal and given sphere
environment. The problem we consider is formulated in the absence of external, incoming fields and external charge
sources, in analogy to the description of surface plasmons at a flat metal–dielectric interface [20,21], with the dispersion
relation of the electromagnetic wave at the metal–dielectric interface treated as a central problem. The problem is solvable
only for complex frequencies of the dispersion relation, that are size dependent. That makes an important difference in
comparison with Mie theory, where the real frequency of the electromagnetic fields is an external, independent parameter
of the theory.

Collective surface charge density oscillations (surface plasmons) at a spherical interface can only be due to the
electromagnetic waves with a nonzero normal to the surface component of the electric field, so to the TM mode only, with
the nonzero radial component of the electric field [20,21,39,40]. At that point there exist a correspondence between
plasmons at spherical interface and surface plasmons that can propagate along a semi-infinite plane of a metal–dielectric
flat interface [20,41]. It is well known, that such surface plasmons can be coupled to the p polarized electromagnetic wave
only. For historical reasons, the orthogonal polarizations p (TM) and s (TE) of the incident wave were defined according to
the direction of the electric (magnetic) field of the wave with respect to the plane of incidence. However, when considering
possibility of surface charge density oscillations, the presence or absence of the normal to the surface component of the
electric field is essential. The p (TM) polarized wave does contain the nonzero normal to the interface component of the
electric field. Irrespective of the shape of the interface, conservation of the normal component of the electric displacement
(so the continuity of Drðr ¼ R;oÞ at a spherical metal–dielectric interface) is assured, if a jump in normal to the surface
component of the electric field E? (which equals Er for a spherical interface) is compensated by a polarization charge at a
interface that oscillates at the electromagnetic field frequency. For a metal–dielectric boundary discussed here, surface
polarization charge is due to collective motion of metal free electrons at a boundary. TE (or s polarized) fields cannot be
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coupled to any surface charge oscillations. We note that Mie theory always deals with the incident field of both transverse
magnetic (or ‘‘electric’’) and transverse electric (or ‘‘magnetic’’) waves: there is no polarization geometry, that allows the
separation of these two waves and to use only one as an incident field. That introduces an important difference in
scattering from spherical (Mie theory) and from a flat interface (Fresnel equations), while in this last case it is possible to
separate p polarization from s polarization geometry.

Formally, the surface plasmon dispersion relation for electromagnetic waves at a spherical interface corresponds to the
zeros of the complex denominators of one of the so-called Mie coefficients bl (or TMBl), which together with al (or TMBl) Mie
coefficient define the extinction and scattering cross-sections through the well-known relations [37–40]:

sext ¼
l2

2p
X1
l¼1

ð2lþ 1ÞReðTMBl þ
TEBlÞ, (1)
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It is often believed, that the resonances in the above crosses (4) and (5) may be directly associated with the
corresponding resonances of the Mie coefficients (4) and (5), resulting from their denominators approaching 0.
However, these denominators, which are composed of complex functions of complex arguments and derivatives
of such functions with respect to the arguments, never can reach 0 for real o0s [30–32] of the incoming light wave.
Therefore, in Mie scattering theory, where a frequency of the field is directly related to the incident light of wavelength l,
and is a real parameter, the real nor the imaginary part of the denominator of mBl can never be equal to 0. All the
measured quantities such as extinction and scattering cross-sections or the intensity of the light scattered in given
direction, are composed not only from the sum of the TM and TE intensities (irradiances), but also from the interference of
these contributions. However, only TM component can carry the contribution arising from a radiation emitted
by the collective surface charge density oscillations that can be excited, if the frequency o of the incident field fits to
the plasmon resonance frequency o0lðRÞ in a sphere of radius R: o ¼ o0lðRÞ. Therefore, neither dipole plasmon in larger
particles nor higher multipolarity plasmons have to correspond exactly to the maxima of the back or forward scattering
cross-sections nor of total extinction cross-section; these quantities possess some maxima which are shifted with respect
to each other.
2.1. Dielectric function and the dispersion relation

The indices of refraction nðoÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�ðoÞ

p
of both media are input parameters of Mie theory and of the dispersion relation

(11), which we consider. For metal particles in vacuum and being much smaller than the wavelength of the incident light
(quasistatic approximation), Mie theory predicts the well-known resonance in the total absorption cross-section (the
‘‘giant Mie resonance’’ (e.g. [39,42,43])) at a frequency:

oMie ¼
opffiffiffi

3
p (6)

assuming the similar dielectric function for the bulk ideal free-electron metal (the Drude dielectric function) and for a
metal nanoparticle:

�mðoÞ ¼ 1�
o2

p

o2 þ iog
(7)

after neglecting the electron relaxation rate g: op is the plasma frequency of the bulk metal, defining its conduction-
electron concentration. The same form of the Drude dielectric function has been used in the dispersion relation for a
surface plasmon at a planar metal–dielectric interface (e.g. [18,19,44,20]):

ksp ¼
o
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mðoÞ�dðoÞ
�mðoÞ þ �dðoÞ

s
, (8)

where ksp is the wave vector of surface plasmon wave at a planar metal–dielectric interface, �d is a dielectric function
of the material over the metal. For �d ¼ 1; and �mðoÞ with g ¼ 0; the surface plasmon flat-interface resonance
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frequency is given by

oSP ¼
opffiffiffi

2
p . (9)

The Drude dielectric function is the simplest form of the analytic function describing the wavelength dependence of
optical properties of free-electron metals, that can be used in modeling the metal optical properties. However, in practice it

can be used only for the optical properties of sodium, with parameters op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne2=�0m�

q
, where N and m� is the density and

the effective mass of the conduction electrons, respectively. In other alkali metals, as well as in noble metals, the interband
transitions constitute important contribution to the optical properties. In addition, in small nanoparticles with radii R

smaller than the electron mean free path in bulk metals, Rol1, the frequency of electron collisions g is modified by the
presence of an interface and depends on the particle radius R [45].

In our modeling we account for the interband transitions in gold and silver nanoparticles by introducing the effective
dielectric function:

�mðoÞ ¼ �1 �
o2

p

o2 þ iog
(10)

with the effective parameters �1 ¼ 9:84, op ¼ 9:096 eV, g ¼ 0:072 eV for gold, and �1 ¼ 3:7 eV, op ¼ 8:9 eV, g ¼ 0:021 eV
for silver chosen in a way, that nin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�inðoÞ

p
reproduces reasonably well the measured real and imaginary parts of the

refraction coefficients n [46] for these elements in the frequency ranges: 0.8–5.0 eV for gold and 0.8–4.2(4.0) eV for silver,
with the parameter �1 accounting for contribution of the interband transitions in those metals.

The optical properties of the dielectric medium outside the spheres are described by �out ¼ n2
out and are assumed to be

frequency independent, with nout chosen as 1 or 1.5 in the calculations.

2.2. Electromagnetic eigenmodes for the metal sphere (plasmons)

The system considered is a homogeneous, nonmagnetic metal sphere of optical properties described by the frequency
dependent dielectric function �inðoÞ of known analytic form (Eq. (10)), and its surrounding dielectric of properties
described by �out. The study is made in the light field wavelength range, where Re�inðoÞp0. We look for the eigenmodes of
self-consistent, divergence free Maxwell equations that can be excited at the metal–dielectric interface. We follow the
concept of [21], adopted in the book [20] dedicated to review of dispersion relations problems in solids and plasmas. We
consider continuity relations at the spherical boundary for the tangent component of the transverse magnetic solution to
the Helmholtz equation in spherical coordinates (e.g. [30,31]), while only TM solutions possess nonzero normal to the
surface component of the electric field (see Section 2). Conditions assuring continuity of tangent components at a sphere
boundary define the dispersion relation [30,31]:ffiffiffiffiffiffiffiffiffiffiffiffiffi

�inðoÞ
p

x0lðkoutðoÞRÞclðkinðoÞRÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�outðoÞ

p
xlðkoutðoÞRÞc0lðkinðoÞRÞ ¼ 0, (11)

which is fulfilled for the complex eigenfrequencies of the fields Ol, l ¼ 1;2;3; . . . at r ¼ R. clðzÞ and xlðzÞ are Riccati–Bessel
spherical functions, the prime marker ð0Þ indicates differentiation with respect to the argument, kin ¼ o=c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�inðoÞ

p
and

kout ¼ o=c
ffiffiffiffiffiffiffiffi
�out
p

.
We solve Eq. (11) numerically with respect to complex values of OlðRÞ ¼ o0lðRÞ þ io00l ðRÞ with the sphere radius R treated

as an outside, independent parameter [30,31]. The real part of the radius dependent eigenvalues OlðRÞ defines the surface
plasmon oscillation frequencies o0lðRÞ for a mode l and the imaginary part o00l ðRÞ defines the damping rates (reciprocal of
damping times) of the surface free-electron oscillations in that mode, if excited. The solution to the problem is possible
only for complex frequencies of the dispersion relation; plasmon oscillations are always damped (losses due to radiation
and heat). It must be stressed that the solutions to the dispersion relation (11) exist only if o00l ðRÞa0. Plasmon oscillations at
spherical boundary are always damped (at least) due to radiation of oscillating charge of surface free-electron densities
waves (plasmons).

First, let us consider sodium as the best free-electron metal of optical properties well described by the analytic Drude free-
electron dielectric function (7), and �out ¼ 1 [30]. As shown in Fig. 1, the frequency of the dipole plasmon, as well as frequencies
of plasmons of higher polarity, decreases with growing particle size. The dipole eigenmode at frequency just known from the
quasistatic approximation: o0l¼1ðRmin;l¼1Þ ¼ op

ffiffiffi
3
p

can be attributed to a sphere starting from the smallest size limit.
Resonance takes place, when a frequency of the incoming light wave o approaches the real part of the eigenfrequency of

a sphere of given radius: o ¼ o0lðRlÞ. The resonance condition is fulfilled for a well-defined size in each excited plasmon
mode l: R ¼ Rl¼1;2..., starting from the minimal value Rmin;l characteristic for given polarity l. The same applies to the
damping rates, which equals jo00l ðRmin;lÞj ¼ g=2 for the characteristic minimal radii Rmin;l in each multipolar mode l [31]. The
corresponding frequencies of plasmons o0lðRmin;lÞ coincide with the values just known from the quasistatic approximation
in the limit of vanishing size (e.g. [20,39,44]):

o0lðRmin;lÞ ¼ op

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2lþ 1

s
. (12)
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Fig. 1. Multipolar plasmon resonance frequencies o0lðRÞ as a function of radius R (rigorous modeling) for sodium nanospheres in vacuum (nout ¼ 1; solid

lines).

Fig. 2. (a) and (b) Multipolar (l ¼ 1;2; . . . ;7) plasmon resonance frequencies as a function of sphere radius in a suspensions of index of refraction:

nout ¼ 1:5 and 1.33 correspondingly for gold nanoparticles and (c) for silver nanoparticles in a suspension of nout ¼ 1:5. Open and black circles correspond

to the experimental data on dipole plasmon position, a square corresponds to quadrupole plasmon position [1–4].
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For l ¼ 1, o0l¼1ðRmin;l¼1Þ equals the well-known value of the Mie resonance frequency: o0lðRmin;lÞ ¼ oMie (Eq. (6)), as
illustrated in Fig. 1. In the limit of large minimal radii Rmin;l (and large l) one gets the value of the oscillation frequency
of a plasmon at flat interface: o0lðRmin;lÞ ! osp (Eq. (9)). The same features characterize gold and silver spheres in vacuum
(in air), but the experiments with unsupported gold and silver nanospheres are usually performed in suspensions of
particles.

Fig. 2 (solid lines) illustrates the obtained size dependence of multipolar (l ¼ 1;2; . . .7Þ plasmon oscillation frequencies
of gold and silver nanoparticles embedded in environment of the refractive index n ¼ 1:5. Contrary to some expectations,
not only the dipole plasmon, but also higher polarity plasmon resonance frequencies can be attributed to particles of size as
small as 10 nm. With growing size, the individual resonances are spectrally better resolved.
2.3. Manifestation of plasmon excitations in light scattered in orthogonal polarization geometries (Mie scattering theory)

Positions of maxima in the intensity of light scattered or transmitted by particles can deliver an indirect, sometimes
approximated information about multipolar plasmon resonance position in particles with radii above some tenths of
nanometers.

Let us consider at first the scattering properties of sodium nanospheres, in the directions orthogonal to the direction
of the incident light beam: parallel and perpendicular to the direction of the incoming light field polarization
(see Fig. 3).

According to the results of Mie scattering theory, the dependence of the intensities of light of frequency o elastically
scattered in directions orthogonal to the direction of the incident light beam on the particle size is described as
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Fig. 3. Scheme of polarization geometry.
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Fig. 4. The dependency of the I?ðRÞ=2pR2 and IkðRÞ==2pR2 intensities scattered in orthogonal polarization geometries (Fig. 3) by a sodium sphere

calculated from Mie theory (solid line) for the incoming light of wavelength l ¼ 514 nm (o514 ¼ 2:41 eV). Dashed line represents the contribution of the

TM mode only to the intensities, with single l ¼ 1 (a) and l ¼ 2 (b) contributions. Horizontal dotted line represent radii Rl allowing to fulfill the resonance

condition o514 ¼ olðRlÞ as expected from solving the plasmon eigenmodes problem (see Fig. 1).
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follows [38]:

I?ðRÞ ¼
1

pR2

l
2pr
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i
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 !�����
�����

" #2

, (13)
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Pð1Þl ðcosYÞ
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�
TEBlðRÞP
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 !�����
�����
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. (14)

We concentrate on the role of the TM mode of the electromagnetic field in these quantities, as only this mode can carry
information about surface plasmon resonance manifestation to the intensities I?ðRÞ and IkðRÞ, (13) and (14), as discussed in
the previous sections.

Our results show that the size dependence of multipolar plasmon resonance frequencies in sodium spheres (Fig. 1), for
light of o514 ¼ 2:412 eV, the dipole plasmon resonance o514 ¼ o0l¼1ðRl¼1Þ is expected for a sphere of radius R approaching
the value Rl¼1 ¼ 62 nm, and the quadrupole plasmon resonance o514 ¼ o0l¼2ðRl¼2Þ is expected for Rl¼2 ¼ 129 nm.

The maxima in the size dependence of the intensities per unit surface I?ðRÞ=2pR2 and IkðRÞ==2pR2 resulting from the Mie
theory coincide with these expectations (see Fig. 4). Both TM and TE components of the electromagnetic fields contribute to
the scattering intensities I?ðRÞ and IkðRÞ, (13) and (14). However, due to the particular geometry of observation, conditions
for observing contribution of secondary fields re-emitted by plasmons with successive values l ¼ 1 and 2 are not the same
in every direction. Let us consider the example presented in Fig. 4, where solid lines represent the intensities per unit
surface I?ðRÞ=2pR2 and IkðRÞ==2pR2 of light at wavelength l ¼ 514 nm, scattered in orthogonal geometries (Fig. 4(a) and (b)
correspondingly), while dashed line represents the contribution of only TM modes of the field to these quantities. In the
particle size range up to R ¼ 150 nm, the TM dipole (l ¼ 1) mode contribution dominates in the total scattered light
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intensity I?ðRÞ=2pR2 (Fig. 4(a)), while the TM quadrupole (l ¼ 2) mode dominates in IkðRÞ==2pR2 intensity (Fig. 4(b)). l ¼ 1
contribution is absent, while the dipole plasmonic antenna does not radiate in this direction.

This analysis leads to the conclusion, that the position of maximum in I?ðRÞ=2pR2 and in IkðRÞ==2pR2 for chosen values of
o of the incident light can be attributed to excited plasmon resonance contribution correspondingly: dipole and
quadrupole one. TE mode contribution is negligible. This result allows us to conclude, that the maxima in IVvðRÞ=2pR2 and
IHhðRÞ =2pR2 resulting from our light scattering experiment on sodium light induced droplets (see Fig. 3 and Section 3.1), are
real manifestation of plasmon resonances, and not a kind of artefact resulting from the complex interference pattern of the
TM and TE mode contributions of different multipolarity.

The observation in orthogonal polarization geometry is the unique experimental scheme allowing the direct separation
of the pure dipole and quadrupole plasmon resonances. This is not possible with any other type of observation and will be
discussed further in Section 2.4.
2.4. Manifestation of plasmon excitations in spectra in a particle of given size (Mie scattering theory)

Let us consider now some scattering spectra of a suspension (nout ¼ 1;5) of gold particles of chosen radius as an
illustration of problems one can encounter when trying to find size dependence of multipolar plasmon resonances.

According to our results concerning plasmon positions in such spheres (Figs. 2(a) and 5(a), dotted vertical lines), several
multipolar plasmons of different l could contribute to the scattered light spectrum for clusters as small as R ¼ 10 nm. For
that size, multipolar contributions are concentrated in a relatively narrow spectral range. For nanospheres as small as
10 nm, only one peak in the total scattering cross-sections can be observed at an eigenfrequency corresponding to the
dipole plasmon resonance o0l¼1 ¼ 2:38 eV, in spite the resonance condition is fulfilled for some higher multipolar
frequencies as well (see Fig. 2).

For a nanosphere with a radius of 60 nm, the dipole plasmon resonance eigenfrequency o0l¼1ðR ¼ 60 nmÞ ¼ 1:93 eV does
still coincides with the strongly broadened maxima in the scattering cross-sections (see Figs. 2(a) and 5(b), dotted vertical
lines). However, the quadrupole plasmon resonance frequency o0l¼2ðR ¼ 60 nmÞ ¼ 2:37 eV and higher polarity plasmon
resonance frequencies do not coincide obligatory with the positions of maxima in the back-scattering cross-sections nor
Fig. 5. The spectra of total scattering, extinction, absorbtion and backscattering differential cross-sections for gold nanospheres with radius: (a) 10 nm, (b)

60 nm and (c) 120 nm in suspension with refraction coefficient nout ¼ 1:5. Horizontal dotted lines represent radii Rl assuring a resonance condition

o514 ¼ olðRlÞ as expected from solving the plasmon eigenmodes problem (see Fig. 1).
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some total extinction cross-sections. In particular, the second pronounced maximum in the backscattering cross-sections
(gray line in Fig. 5(b)) suffers a significant red shift with respect to the expected quadrupole plasmon position at o0l¼2ðR ¼

60 nmÞ ¼ 2:37 eV and with respect of the corresponding maximum in the total scattering cross-section, which in turn, is
shifted with respect to the maximum in the total extinction cross-section. Despite plasmon multipolar resonances are
better spectrally resolved with increasing particle radius Fig. 2(a), in some measured quantities manifestation of plasmons
with l41 is not possible.

The effect of shifting the maxima in the scattering spectra with respect to the dipole plasmon multipolar resonances
positions o0lðRÞ and smearing out of the resonances is still more pronounced for a particle as large as 120 nm in radius
(Fig. 5(c)) and larger. In particular, the second maximum in the back-scattering cross-sections can not be related to the
dipole plasmon manifestation at all. For given measured quantity, depending on the particle size, the result of interference
of TM and TE contributions of different multipolarity influence the manner the plasmon excitation can manifest.

That illustrates the importance of looking for plasmon size characteristics within a model allowing describing plasmon
excitations as the intrinsic property of a spherical nanostructure, that is detached from the quantity, which is observed.

3. Experimental determination of the size dependence of the dipole and quadrupole plasmon resonances

To check experimentally our basic expectations for surface plasmon size dependencies we need free-electron metal
spheres with smoothly changeable radii. The possibility of studying the continuous change in size of optical properties of
continuously growing metal sphere is not common. Such an opportunity is the most attractive feature of the light-induced
sodium droplet experiment developed in our laboratory [47,48]. In addition, the spherical symmetry imposed by the
surface tension of an unsupported liquid sodium droplet allows as producing almost perfect spherical scatterers. With this
experimental technique we are able to determine experimentally the size dependence of the dipole and quadrupole
plasmon resonances in such spheres, using the experiment geometry summarized in Section 2.3.

3.1. Scattering experiment on sodium spheres with smoothly changeable radii

Our method of sodium nanosphere production [47,48] relies on condensation of sodium spherical droplets from
saturated sodium vapor. At the utilized temperatures, saturated sodium vapor consists not only of atoms, but there are also
sodium dimers [48].

The successive stages of the production process are illustrated in Fig. 6.
We optically excite two-atom sodium molecules near the dissociation limit. The excited dimers become dissociated as a

result of collisions with a noble gas under high pressure. Appearance of additional sodium atoms in a previously saturated
atomic vapor produces supersaturation resulting in sodium droplet condensation and spontaneous growth. In our
experiments, we observe the smooth change of their sizes with time up to a macroscopic droplet of about 300 nm in
diameter, where the size is comparable to the wavelength of the light.

Intensities of the probe beam scattered elastically by growing droplets were measured at polarization of the light
parallel and perpendicular to the observation plane (Fig. 3). The experiment was repeated for several wavelengths of the
Excitation of dimers with
laserlight

Na+Na*Na2*
collisions

Dissociation of dimers

Na2*Na2
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Fig. 6. Successive stages of initiating sodium droplet condensation from saturated sodium vapor with laser light.
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for a sodium spheres of op ¼ 5;6 eV and g ¼ 1 eV (solid lines).
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argon-ion laser light, corresponding to o ¼ 1:918; 2:184; 2:412; 2:71; 3:079 eV. Comparison of measured intensities with
calculated intensities resulting from Mie scattering theory for chosen o (for example, for o ¼ o514: solid line in Fig. 4)
allowed us to determine the radius and concentration of droplets at any given stage of the growth process [48]. The fitting
procedure is described in more details in [48]. Using these data we are able to find the intensities scattered by the unit
particle surface of a linearly polarized laser light beam in two orthogonal polarization geometries (Fig. 3) as a function of
droplet radius and to identify the dipole and quadrupole plasmon resonances. We found droplet radii corresponding to the
maxima of intensities: Rl¼1 and Rl¼2 correspondingly for different o of the scattered wave of the laser light, as described in
Section 2.3. Fig. 7 illustrates the results: circles correspond to the dipole plasmon and squares to the quadrupole plasmon
positions obtained as a mean arithmetic value of the results for a group of successive scattering experiments. Solid lines
represent our data resulting from eigenfrequencies consideration of sodium spheres (Section 2.2).

The error in finding the radius Rl¼1 and Rl¼2 for given scattering light wavelength is smaller than 10%, if determined as a
standard deviation from the mean value derived from the successive scattering experiments. However, the rate of changes
in concentration was not uniform during the droplet growth process. During the very first stage of droplet growth, the
concentration was changing by at least three orders of magnitude. Such rapid change influenced negatively the quality of
our fitting procedure, as measured by the statistical coefficient Vx defined in [48], and used as a measure of the misfit of the
Mie formulae with the accepted parameters to the scattering experimental data. The parameter Vx changes approximately
linearly from the value of 20% for R ¼ 50 nm to 10% for R ¼ 120 nm, showing much better fit for larger droplet sizes.

We also checked, that the ‘‘crossed-polarization’’ signals were not bigger than 10% of the studied signals and were a
measure of depolarization caused by multiple reflection on the cloud of droplets and on the walls of the cell and dispersed
in the directions of observation [48]. Therefore, the assumption concerning the sphericity of scatterers is well fulfilled.

The possible source of errors can be the dispersion of droplet sizes at given stage of the growth process. In [48] we
abandoned the assumption concerning monodispersivity of droplet sizes in order to check whether it is possible to better
reproduce the experimental scattering data with Mie theory augmented with the droplet size distribution. We assumed the
dispersion of droplet sizes at a given time t and we allowed for asymmetry in the distribution of droplet sizes to distinguish
between the small-size wing and the large-size wing half-widths of the size distribution. We found that the size
distribution was asymmetric and broadened towards the larger droplet sizes. That can cause the overestimation of droplet
sizes within the monodispersive modeling, especially for smaller size ranges (see Fig. 7).
3.2. Experimental scattering spectra of gold and silver nanospheres of chosen radii [1–3]

The light scattering spectra of individual gold and silver particle commercially available in various nominal sizes are
measured using dark-field microscopy in [1]. Agreement with Mie scattering theory is reported to be reasonably good for
the gold clusters and less satisfactory for the silver clusters. Figs. 2(a) and (c) illustrate the positions of dipole resonances
(black circles) for gold and silver nanoparticles, and Fig. 2(a) illustrates the position corresponding to the quadrupole
plasmon resonance (square). The emergence of the quadrupolar peak in measured spectra is reported to be expected for
very large clusters where the optical field becomes nonuniform across the cluster. Based on our results presented in Fig. 2,
the multipolar plasmon resonances in the largest spheres are spectrally well separated. Therefore, an observation of the
quadrupole plasmon contribution to the signal in the largest spheres is more favorable. However, the distinctness of the TM
quadrupole plasmon resonance contribution is smeared out due to the interference of individual multipolar contributions
to the intensity in the employed observation geometry.

In [2,3] spectroscopic properties of gold particles in water are studied and particle diameter and concentration were
derived from UV–vis spectra. In [3] the close agreement between the experimental and the results of Mie scattering theory
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are reported. The peak positions as a function of particle size are redrawn in Fig. 2(b) (dark circles). These results are in
excellent agreement with the results reported in [2] (open circles in Fig. 2 (b)). The perfect agreement is reported of the
calculated extinction spectra and experimental data for particle sizes from 25 to 120 nm. As reported, for small particles
this peak is damped due to the reduced mean free path of the electrons.

In [4] a study of the effect of size and shape on the spectral response of individual silver nanoparticles was presented.
The maxima in the optical spectrum of many individual nanoparticles were attributed to plasmon resonances and then
correlated to their size and shape using high-resolution transmission electron microscopy. The results for the dipole
plasmon in spherical particles are represented as the open circles in Figs. 2(c) (in spite of the fact that the value of nout is not
known). The resulting size dependence of resonances position is much weaker than expected from the eigenvalue
considerations and differ from the corresponding ones obtained in [1]. This can be possibly due to particle faceting or
chemical reactivity of silver particles, that influence thee particle composition and change particle optical properties in
comparison with the perfectly clean silver.

The experimental size dependent dipole plasmon for gold and silver spherical particles derived from peak positions of
scattering spectra [1–3] are slightly red shifted in respect to the dipole plasmon size characteristics resulting from the
analysis of the dispersion relation, as illustrated in Fig. 2. That is in qualitative agreement with our expectations discussed
in Section 2.4 and illustrated in Fig. 5.
4. Conclusions

Surface plasmon excitations at spherical metal/dielectric interface can be described as a basic, intrinsic property of a
spherical nanostructure, that can manifest in the optical response to the external electromagnetic field at discrete,
characteristic, size dependent resonance frequencies o0lðRÞ specific for a given particle of radius. The resulting surface
plasmon size characteristics deliver multipolar plasmon resonance frequencies and plasmon damping rate as an explicit,
continuous function of particle radius and is abstracted from the quantity that can be observed in experiments relying on
measuring light intensity (irradiance). Plasmon resonance takes place if the frequency o of the incident wave approaches
the plasmon resonance frequency in a sphere of radius R: o ¼ o0lðRÞ. The notion of surface plasmons is related to collective
surface density oscillations and to the TM modes of the electromagnetic fields coupled to these oscillations, while such
modes contain nonzero radial (so normal to the surface) component of the electric field.

However, the quantities which can be measured in optics (light intensities/irradiances) are inevitably composed of both
TM and TE components of different polarity l. Both contributions interfere forming the complex pattern dependent on the
geometry of observation and on the size of a particle in comparison with the wavelength of the light being scattered. The
result of the negative interference can result in cancellation or in smearing out of the plasmon electromagnetic field
contribution to the intensity of light scattered in a given direction. The resonant plasmon contribution of given l is of TM
polarization only. The TE contributions of eddy currents are size dependent, but changes monotonically with particle radius
R, contributing to the shift of maxima related to the resonant TM mode contribution in given measured quantity. It is why
the maxima in quantities like a back scattering cross-section or a total extinction cross-sections, calculated on the base of
Mie scattering theory, can differ from the multipolar plasmon resonance position, as derived from the dispersion relation
for the plasmon electromagnetic fields.

The dispersion relations that we analyzed, are formally a part of Mie scattering theory and correspond to zeros of
complex denominator of the TMBl Mie coefficients (Eqs. (5)). However, Mie theory does not deal with the notion of collective
surface density oscillations, neither the notion of plasmon resonances. Multipolar resonance frequencies o0lðRÞ defining the
resonance condition: o ¼ o0lðRÞ are not present within the formalism. No information on the radiative damping size
dependence is available from such kind of study.

Multipolar plasmon resonance frequencies and plasmon damping rates expressed as a continuous function of size could
be of practical use, e.g. for planning SERS experiments, allowing the optimal particle size for enhancement of the plasmon
resonance electric field of frequency optimal for given molecular transition.
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[1] Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J. Plasmon resonances in large noble-metal clusters. New J Phys 2002;4:93.1–8.
[2] Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem

2007;79:4215–21.
[3] Njoki PN, Lim I-IS, Mott D, Park H-Y, Khan B, Mishra S, et al. Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys

Chem C 2007;111:14664–9.
[4] Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys

2002;116:6755–9.



ARTICLE IN PRESS

K. Kolwas et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009) 1490–1501 1501
[5] Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology,
catalysis, and nanotechnology. Chem Rev 2004;104(1):293–346.

[6] Quinten M, Leitner A, Krenn J, Aussenegg F. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 1998;23(17):1331–3.
[7] Maier SA, Brongersma ML, Kik PG, Atwater HA. Observation of near-field coupling in metal nanoparticle chains using far-field polarization

spectroscopy. Phys Rev B 2002;65(19):193408.1–4.
[8] Dickson RM, Lyon LA. Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 2000;104(26):6095–8.
[9] Brongersma ML, Hartman JW, Atwater HA. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit.

Phys Rev B 2000;62:R16356–9.
[10] Krenn JR, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, et al. Non-diffraction-limited light transport by gold nanowires. Europhys Lett

2002;60(5):663–9.
[11] Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, et al. Detection and identification of a single DNA base molecule using surface-

enhanced Raman scattering (SERS). Phys Rev E 1988;57(6):R6281–4.
[12] Faulds K, Smith WE, Graham D. Evaluation of surface-enhanced resonance raman scattering for quantitative DNA analysis. Anal Chem

2004;76(2):412–7.
[13] Efrima S, Bronk BV. Silver colloids impregnating or coating bacteria. J Phys Chem B 1998;102(31):5947–50.
[14] Kneipp K, Wang Y, Dasari RR, Feld MS. Near-infrared surface-enhanced Raman scattering (NIR-SERS) of neurotransmitters in colloidal silver solutions.

Spectrochim Acta A 1995;51A(3):481–7.
[15] Schultz S, Smith DR, Mock JJ, Schultz DA. Single-target molecule detection with nonbleaching multicolor optical immunolabels. PNAS

2000;97(3):996–1001.
[16] Schultz S, Mock J, Smith DR, Schultz DA. Nanoparticle based biological assays. J Clin Ligand Assay 1999;22:214–6.
[17] Yguerabide J, Yguerabide EE. Anal Biochem 1998;262:157–76.
[18] Raether H. In: Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics, vol. 111. Berlin, Heidelberg:

Springer; 1988.
[19] Cottam MG, Tilley DR. Introduction to surface and superlattice excitations. New York: Cambridge University Press; 1989.
[20] Fuchs R, Halevi P. Basic concepts and formalism of spatial dispersion. In: Spatial dispertion in solids and plasmas. Amsterdam: North-Holland; 1992.
[21] Rupin R. Electromagnetic surface modes. Chichester: Wiley; 1982.
[22] Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using

a surfactant template. Adv Mater 2001;13(18):1389–93.
[23] Orendorff CJ, Murphy CJ. Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 2006;110(9):3990–4.
[24] Liao H, Hafner JH. Gold nanorod bioconjugates. Chem Mater 2005;17(18):4636–41.
[25] Schider G, Krenn JR, Hohenau A, Ditlbacher H, Leitner A, Aussenegg FR, et al. Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B

2003;68:155427.1–4.
[26] Schaich WL, Schider G, Krenn JR, Leitner A, Aussenegg FR, Puscasu I, et al. Optical resonances in periodic surface arrays of metallic patches. Appl Opt

2003;42(28):5714–21.
[27] Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA. Multipole plasmon resonances in gold nanorods. J Phys Chem 2006;110(5):2150–4.
[28] Khlebtsov BN, Melnikov A, Khlebtsov NG. On the extinction multipole plasmons in gold nanorods. J Quant Spectrosc Radiat Transfer

2007;107(2):306–14.
[29] Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J

Am Chem Soc 2005;127(15):5312–3.
[30] Derkachova A, Kolwas K. Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles.

Eur J Phys ST 2007;144:93–9.
[31] Kolwas K, Derkachova A, Demianiuk S. The smallest free-electron sphere sustaining multipolar surface plasmon oscillation. Comput Mater Sci

2006;35:337–41.
[32] Kolwas K, Demianiuk S, Kolwas M. Optical excitation of radius-dependent plasmon resonances in large metal clusters. J Phys B 1996;29:4761–70.
[33] Kolwas K, Demianiuk S, Kolwas M. Dipole and quadrupole plasmon resonances in large sodium clusters observed in scattered light. J Chem Phys

1997;106:8436–41.
[34] Faraday M. Experimental relations of gold and other metals to light. Philos Trans R Soc London 1857;147:145–81.
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