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Abstract. Multipolar plasmon oscillation frequencies and corresponding damp-
ing rates for nanospheres formed of the simplest free-electron metals are studied.
The possibility of controlling plasmon features by choosing the size and dielec-
tric properties of the sphere surroundings is discussed. Optical properties of the
studied metals are described within the Drude-Sommerfeld model of the dielectric
function with effective parameters acounting for the contribution of conduction
electrons and of interband transitions. No approximation is made in respect of the
size of a particle; plasmon size characteristics are described rigorously. The results
of our experiment on sodium nanodroplets [1] are compared with the oscillation
frequency size dependence of dipole and quadrupole plasmon.
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1 Introduction

The possibility of excitation and observation of surface plasmons in spherical metal particles is
a subject of continuously increasing interest. It is connected with a wide range of applications of
plasmon excitations in nanotechnology, biophysics, biochemistry etc. The most attractive fea-
ture of the surface plasmon resonances is the concentration of electromagnetic field energy near
the particle surface. The Surface Enhanced Raman Spectroscopy is based on this phenomenon
[2,3]. SERS spectroscopic techniques allow spectral studying of single molecules, particles and
cells [4,5]. Small noble metal spheres (with size from 20 to 120 nanometers), introduced into
an investigated biomaterial, can be used as markers of some specific biomolecules, tissue cancer
changes or viruses [6,7].

The frequency dependence of the optical properties of a simple bulk metal (alkali metal)
change with free electron density, electron relaxation rates, and the contribution of bound
electrons to the polarizability [8,9]. The simplest model for the dielectric function of bulk metal
is the Drude-Sommerfeld model of free electron gas. The optical properties of metal nanospheres,
as well as of others nanostructured metal materials, are in addition geometry and (or) size
dependent. These futures are caused by the confinement of the electron gas resulting from
the presence of metal-dielectric boundary. In particular, optical properties of spherical metal
particles are characterized by size dependent discrete eigenfrequencies. These eigenfrequencies
can manifest as resonances in the optical response of a sphere to the external electromagnetic
field. The complex eigenfrequencies define the plasmon oscillation frequencies and the damping
rates of collective surface electron density oscillations which can be excited by the external
electromagnetic field. In contrast to the flat metal surface, the curved surface enables the direct
optical excitation of surface plasmons.
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In this paper we present a solution of the eigenproblem of nanospheres formed of the sim-
plest free-electron metals. The analysis is concentrated on the influence of size and of material
parameters upon the multipolar plasmon features. Optical properties of the studied metals
are described within the Drude-Sommerfeld model of the dielectric function with effective pa-
rameters accounting for the contribution of interband transition to the dielectric properties of
metal. No approximation is made in respect of the size of a particle; plasmon size characteris-
tics are described rigorously. We discuss the role of the material parameters characterizing the
electromagnetic properties of nanospheres in controlling of plasmon features. We compare the
expected size dependence of plasmon oscillation frequency of dipole and quadrupole plasmon
with the results of our experiment on sodium nanodroplets [1].

2 Eigenvalue problem for a metal sphere

The eigenvalue problem is formulated in absence of external fields. The eigenvalues result from
the condition that the harmonic solutions of Maxwell equations exist in both; the metal sphere
and its dielectric surroundings. The discrete complex frequencies of electromagnetic fields result
from the continuity relations (in spherical coordinates) at the sphere boundary of the transverse
magnetic solutions of Maxwell equations (TM polarization). These fields are coupled to the
collective surface electron density oscillations at the sphere surface, that are called surface
plasmons. The eigenfrequencies problem was presented in more detail e.g. in [10] for the flat
metal-dielectric interface and e.g. in [10,11] for the spherical interface. At the flat boundary,
the surface plasmon dispersion relation can be obtained in a simple analytical form. The wave
vector of a surface plasmon wave ksp [10]:

ksp =
ω

c

√
εm(ω)εd(ω)

εm(ω) + εd(ω)
(1)

where εm(ω) and εd(ω) are the dielectric function of the metal and of the dielectric sur-
roundings respectively. For free-electron metal described by the relaxation-free Drude dielectric
function: εm(ω) = 1−ω2

p/ω2 , and εd(ω) = 1, the dispersion relation 1 leads to the well known
”surface-plasmon frequency” at ω = ωp/

√
2 [10].

However, in the case of a spherical boundary, the plasmon dispersion relation results from
solution of the dispersion equation in complex form:

√
εinξ′l (koutR)ψl (kinR)−√εoutξl (koutR) ψ′l (kinR) = 0, (2)

with l = 1, 2, 3...where the wave numbers kin, and kout are equal to:

kin =
ω

c

√
εin(ω), (3)

kout =
ω

c

√
εout(ω). (4)

εin and εout are dielectric functions of the investigated metal sphere and of the dielectric
environment respectively, and define the corresponding refraction coefficients: nin =

√
εin and

nout =
√

εout. ψl (z) and ξl (z) are Riccati-Bessel spherical functions which can be expressed
by the Bessel Jl+ 1

2
(z), Hankel H

(1)

l+ 1
2
(z) and Neuman Nl+ 1

2
(z) cylindrical functions of the half

order, defined (e.g. in [12]) as:

ψl(z) = z · jl(z) = z

√
π

2z
Jl+ 1

2
(z), (5)

ξl(z) = ψl(z)− i · χl(z) = z · h(1)
l (z) = z

√
π

2z
H

(1)

l+ 1
2
(z), (6)

χl(z) = z

√
π

2z
Nl+ 1

2
(z). (7)
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Solutions of the dispersion equations 2 for each l mode exist only for the complex frequencies
of the TM (transverse magnetic) polarized electromagnetic field at the sphere boundary, at
r = R [10,11]:

Ωl(R) = ω′l(R) + i · ω′′l (R), (8)

and can be found numerically for known dielectric functions of the metal sphere εin(ω) and
its dielectric surroundings εout(ω). ω′l(R) are the oscillation frequencies of TM electromagnetic
field at the surface in mode l = 1, 2, 3.... ω′′l (R) are the damping frequencies of these oscillations,
and are the convolution of the radiative damping and of electron relaxation processes.

3 Drude-Sommerfeld model of the dielectric function

Some of the metal properties, including the optical properties, can be described within the
simple free-electron gas Drude-Sommerfeld model of the dielectric function. In the framework
of this model, with an external field applied, the conduction electrons move freely between
independent collisions occurring at the average rate of γ. The frequency dependent dielectric
function ε(ω) predicted by Drude-Sommerfeld model:

ε(ω) = ε∞ − ω2
p

ω2 + iγω
, (9)

includes the contribution of the bound electrons to the polarizability by introducing phe-
nomenological parameter ε∞. This parameter equals 1 only if the conduction band electrons
contribute to the dielectric properties. The plasma frequency ωp is given by:

ωp =

√
Ne2

ε0m∗ , (10)

where N and m∗ are the density of conduction electrons and the electron effective mass
respectively.

In order to solve the dispersion equation 2 with respect to the frequency, we assumed that for
the best free-electron metal: εin(ω) = ε(ω) (eq. 9) with the following parameters: εNa

∞ = 1.06
[13], ωNa

p = 5.6 eV [8] and γNa = 0.03 eV for sodium, εLi
∞ = 5.843, ωLi

p = 8 eV [8] and
γLi = 0.05 eV for lithium, and εCs

∞ = 1.8, ωCs
p = 3.4 eV [8] and γCs = 0.03 eV for cesium. The

dielectric function 9 for sodium (solid line in Fig. 1 a) and b)) reproduces the optical constants
n measured for liquid and solid sodium[14,15] (open and closed circles on Fig. 1) quite well.
However, the dielectric properties for lithium [15] (squares in Fig. 1 a) and b)) and cesium [16]
(triangles in Fig. 1 a) and b)) are more complex, and are less satisfactory reproduced by the
Drude-Sommerfeld dielectric function in the studied frequency range, as illustrated in Fig. 1
(dotted line for Li and dashed line for Cs).

The proper choice of the parameters entering the dielectric function is crucial to predicting
plasmon resonance characteristics in experimental realizations. Let’s notice, that the optical
constants of metals [14–16] were measured in high vacuum conditions and for metals of ex-
tremely clean surfaces. However, optical experiments with metal nanoparticles are performed
usually under less strict laboratory conditions, for rather contaminated particles. Contamina-
tion can be caused by the presence of the atmosphere [1,17] and as a result of storing the
particles [18] or the bulk metal [17] in some liquids before the experiments. Therefore, the
experimental data concerning the plasmon resonance position can be shifted in respect of the
predictions assuming ”ideal” dielectric properties of a metal. Below we discuss the trends of
expected corrections to the plasmon resonance frequencies due to the modifications in parame-
ters ε∞, ωp and γ entering the metal dielectric function 9. We also demonstrate the importance
of the optical properties of environment in determining the position of plasmon resonance of
given polarity l.
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Fig. 1. The real and imaginary part of the dielectric function with the effective parameters ε∞, γ
and ωp for cesium, sodium and lithium (dashed, solid and dotted line). Triangles, circles and squares
mark Re(n2) and Im(n2) values, resulting from measuring the optical constants n of the corresponding
metals [13-15].

4 Results and discussion

Figures 2 a)-f) illustrate the multipolar (l = 1, 2...6) plasmon resonance frequencies ω′l(R) and
the corresponding damping rates ω′′l (R), resulting from solving the dispersion equation 2 with
respect to the frequency allowed being complex. We have used the Müller method of secants
for finding the numerical solutions of f(v) = 0 assuming the starting approximated values
of the function parameter v in the vicinity of the exact value which may be complex (the
”root” function of the Mathcad program). For given l, the successive values of R were treated
as external parameters and where changed with step ∆R ≈ 2 nm up to the final value of
R = 200 nm. The starting, approximated values for ω′l(R) entering the root procedure were
found from the range between ωp/

√
ε∞ + εout(l + 1)/l to ωp/

√
2 and the negative values of ω′′l

were assumed.
Plasmon oscillations are always damped (Fig. 2 b), d) and e)) due to radiation and the

relaxation processes included in the relaxation rate γ. The initial increase of the damping rate
for given oscillation mode l, is followed by a decrease of |ω′′l (R)| for sufficiently large particles,
as demonstrated for the dipole plasmon damping rate (l = 1). The plasmon damping rate
dependence on particle size ω′′l (R) is dominated by the radiative damping [1].

Excitation of plasmon resonance in a sphere of given radius R takes place when a frequency ω
of the external electromagnetic wave fits the frequency of a plasmon mode of given multipolarity
l: ω = ω′l(R). For all studied simple-metal spheres (Figures 2 a)-f)), plasmon oscillations can
be excited at optical frequencies. For the source of light of broad spectrum (as in experiments
using dark-field microscopic techniques reported e.g in [18] or [19]), not only dipole, but also
higher multipolar plasmon resonances can be excited. As we have demonstrated for sodium
spheres in [11], the highest possible plasmon multipolar resonance frequency ω′0,l and the
corresponding damping rate ω′′0,l can be attributed to a sphere of a minimum radius Rmin,l:
that is: ω′0,l = ω′0,l(Rmin,l), ω′′0,l = ω′′0,l(Rmin,l). Rmin,l being the fast increasing function of the
plasmon multipolarity l.

For a given particle size, the frequency of plasmon oscillation increases with increasing
plasma frequency ωp (free-electron concentration N). For example, the dipole plasmon reso-
nance frequency of a particle of 50nm radius is smaller for cesium than for sodium, both metals
with parameter ε∞ only slightly differing from 1. With decreasing size the dipole plasmon os-
cillation frequencies are slightly modified with respect to the frequency ω′0,l=1 = ωp/

√
3 of so
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Fig. 2. Multipolar plasmon resonance frequencies ω′l(R) and plasmon oscillation damping rates ω′′l (R)
as a function of the radius R (rigorous modelling) for lithium, sodium and cesium nanospheres in
vacuum (nout = 1, solid lines), and embedded in glass (nout = 1.5, short-dashed lines). The first six
(l = 1, 2...6) multipolar plasmon characteristics are presented.

called ”Mie resonance” [9]. However for lithium, with large value of ε∞, the dipole plasmon
frequency ω′0,l=1 is strongly red shifted with respect to the ωp/

√
3, as for all the higher order

plasmon frequency dependence upon size.
As demonstrated in Fig. 2 a)-f) (short-dashed lines), the dielectric properties of the sphere

environment can introduce drastic changes to the multipolar plasmon resonance frequency
dependence ω′l(R) as well as to the corresponding plasmon damping rates ω′′l (R); the proper
choice of the refractive index of the environment is the most effective tool (and the easiest in
practical application) for controlling plasmon resonance futures.
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Fig. 3. Multipolar plasmon resonance frequencies ω′l(R) and plasmon oscillation damping rates ω′′l (R)
as a function of radius R for very clean (γ = 0.03eV , solid lines) and contaminated (γ = 1eV , short-
dashed lines) sodium nanosphere, calculated for (l = 1, 2...6). Circles and squares correspond to the
sphere radii allowing to excite the dipole and the quadrupole plasmon resonance with laser light of
different wavelength, according to [1].

As we mentioned above, the experimental results concerning the multipolar plasmon reso-
nance frequencies for a particle of a given size can differ from solutions of the eigenproblem with
”ideal” dielectric properties assumed. Our experiment on sodium droplets which spontaneously
grow after the sodium vapour supersaturation by laser light [1,17] can serve as an example.
Due to the presence of the atmosphere and sodium reactivity, relaxation rate is increased to
the value of γ = 1eV [1,17]. It red shifts the plasmon resonance frequencies ω′l(R) and intro-
duces important modification to the plasmon damping rates ω′′l (R), as illustrated in Fig. 3 a)
and b). However, if γ ¿ ω, electron relaxation causes negligible shift of plasmon resonance fre-
quency, while plasmon damping rates remain dominated by the size dependence of the radiative
damping, as demonstrated in [11] for sodium spheres after assuming γ = 0 in the analysis.

The utility value of the elaborated numerical tool for predicting the multipolar plasmon
resonance characteristics depends on the quality of reproducing the actual optical properties
of a metal by the dielectric function with the effective parameters. It is worth noting however
that such fitting can be reduced to the frequency range of interest in a particular plasmon
application which corresponds to 1eV ÷ 4eV , as illustrated in Fig.2 a), c) and e) for studied
metals.

The elaborated numerical algorithm allows predicting the dependence of plasmon charac-
teristics upon size of any metal spherical particle of known form of the dielectric function ε(ω).
Such tool can help in tailoring multipolar plasmon resonance properties according to the re-
quirements of particular application by choosing the proper size and the material properties of
a nanosphere, as well as the appropriate particle environment.
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