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ABSTRACT

We investigated elastic light scattering on isolated evaporating droplets of radius between 1 and 20 µm. The droplets were
either pure water or a water based suspension, they carried electric charge and were contained in an electrodynamic trap. The
evolution of the trapped droplet was investigated by means of scatterometry. A numerical model of such evolution, incorpo-
rating the kinetic effects near the droplet surface was constructed. For water droplets with spherical inclusions the radius as
well as effective refractive index was determined. An essential deviation, in the form of a resonance, from predictions by
standard effective medium theories was encountered. Simple analysis of the phenomenon was conducted and a qualitative
explanation is proposed. Similar analysis was applied to fullerene water suspension droplets in order to investigate the real
part of refraction index.

Keywords:  charged droplet, electrodynamic trap, microparticle levitation, mass accommodation coefficient, thermal accom-
modation coefficient

1. INTRODUCTION

The observation of light scattered on various objects is a most common method of investigation of the reality. In this paper
we study the scattering of light on water and water suspensions particle of the fundamental, ideal shape of a sphere, with the
radius comparable to the wavelength of the used light – a few micrometers. Under normal atmospheric conditions - below
100% relative humidity S - the droplets of pure water are not stable.  They grow for S>1 or shrink for S<1. Careful observa-
tion of light scattering together with the appropriate use of theory allows to determine the radius and the refraction index n
(or dielectric function ε: ε=n2) of the droplet. The issue of refractive index is especially interesting for droplets of suspen-
sions, which are so omnipresent. In the first part of this paper we present the study of evolution of pure water microdroplet
with well known refraction index. This investigation made it possible to look into kinetic regime of droplet evolution - the
region of droplet sizes of the order of the free path of air molecules. In this region it is necessary to supplement diffusion
coefficient with so called evaporation coefficient αC describing the ratio of the number of molecules crossing the liquid-vapor
interface to the number of molecules impinging on it: αC =nevap/ncol. Similarly, the thermal conductivity of moist air must be
supplemented with the thermal accommodation coefficient αT, determines the probability that a molecule on impinging the
interface attains the thermal equilibrium with the medium on the opposite side. The literature yields a very imprecise value
for αC and αT ranging from 0.01 to 1 (compare e.g.: [1, 2, 3, 4]). The aim of our first experiments was to find the value of αC
and αT.

2. MODEL

The evaporation of droplets has been widely discussed, also taking kinetic effects into account (see e.g.: [3, 4, 5, 6]). The
evolution of the droplet is driven by the gradients of temperature and water vapor density near the droplet surface. However,
water mass transport up to the distance comparable to the mean free path of air molecules from the droplet surface a<r<a+∆
ought to be described with gas kinetic expressions (∆ is of the order of the mean free path of air molecules [4]). For r≥ a+∆
the diffusional transport of the water vapor should be considered.

The droplet mass m change is equal to the flux of water through the droplet surface:
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Therefore the equation of evolution of droplet radius can be written as:
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where ρL is liquid water density and ρ(r=a) and ρ∞ are water vapor densities on the droplet surface and far from that surface
respectively. DK is an effective diffusion coefficient, equal to the diffusion constant D for sufficiently large droplets, Ta is
temperature of the droplet, M is the water molecular mass and R is the universal gas constant. Expressing vapor density far
from the droplet by means of saturated vapor pressure pS at a given temperature leads to
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where S is the relative humidity, T∞ is the temperature far from the droplet. Similarly
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is the vapor density near the charged droplet surface, where γ is the surface tension of water, Q is the charge of the droplet
and ε0 is the permittivity of vacuum. Finally time evolution of the droplet radius is:
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Similar procedure for the transport of heat leads to the equation describing evolution of temperature:
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where cW and q are specific heat capacity and latent heat of evaporation of water respectively, λ, ρA, cP and MA are thermal
conductivity, density, specific heat capacity under constant pressure and molecular mass of moist air respectively and ∆T is
the ‘thermal jump’ distance.

Thus, the model of evaporation utilized in our analysis consists of two equations describing the transport of water mass (5)
and heat (6) between the droplet and its surroundings. Additionally we must remember about Rayleigh’s condition [5]– the
fissility parameter X ought to be smaller than 1:
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where EQ and Eγ are the Coulomb and surface tension energies respectively.

It is worth noting that without the Rayleigh’s condition the equation set (5)-(6) predicts the asymptotic stabilization of evapo-
rating droplet radius 0→a& for a→ aend , given by the equation:
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3. EXPERIMENT

The experimental setup is presented in figure 1. A detailed description can be found in our previous papers [7]. Paul trap kept
in the climatic microchamber is the heart of the system. Water droplets are injected into the trap. The light scattered by the
trapped particle was collected through the port in the ring electrode with the microscope objective positioned in the scattering
plane at right angle from the direction of the incident beams (see figure 2). The numerical aperture of the system was ~0.17.
The first experiments were conducted with pure water (20 ppb total dissolved substances) at temperatures of 13.7 °C and
13.1 °C, atmospheric pressure of 1006 hPa and the charge Q of the order of 5×105 elementary charges. We registered the
scaterograms of the evaporating droplet. Then with the aid of the Mie theory the time dependence of droplet radius was de-
termined (see figures 3 and 4).
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Figure 1. Experimental setup diagram.

Figure 2. An example of observed
scattered light. The fitting of the inter-
ference fringes pattern with the Mie
theory enables simultaneous determi-
nation of the radius and the refractive
index of the droplet.
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Figure 3. Evaporation of pure water droplet. Figure 4. Evaporation of a contaminated water droplet. The stabili-
zation of the radius for S<1 is possible due to the reduction of the
vapor pressure over the curved surface caused by the dissolved or
surface active substances.

From the time dependence of the radius a(t) we can determine the value of the mass accommodation coefficient αC
=0.12±0.01, the thermal accommodation coefficient αT = 0.65±0.09 as well as the very precise value of the relative humidity.

4. LOCAL-FIELD RESONANCE IN LIGHT SCATTERING BY A SINGLE WATER DROPLET WITH
SPHERICAL DIELECTRIC INCLUSIONS

In the second type of experiment we used the following suspensions of nanospheres in water: (i) porous silica (refractive
index  n=1.45) of 300 and 450 nm diameter and (ii) polystyrene (n=1.58) of 200 nm diameter. Vertically polarized 632.8 nm
He-Ne laser light was scattered on a single levitated droplet of suspension. We registered the light scattering patterns on s
and p polarizations (perpendicular and parallel to the scattering plane respectively) simultaneously. The signal in p polariza-
tion appears when the levitated particle depolarizes light. Since water was evaporating from the droplet, we could observe the
transition from scattering on a diluted suspension through scattering on a concentrated suspension to scattering on a dry na-
nospheres agglomerate or a finite-size highly imperfect photonic crystal. In the first case we observed a Mie scattering pat-
tern appearing on s polarization only (see figure 5a); the second (figure 5b) is characterized by a speckled Mie scattering
pattern and in the third (figure 5c) we can see bulk speckle or imperfect Kossel lines [8] that are totally depolarized.

 a                                                           b                                                        c

s-polarization
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Figure 5. Examples of the scattering patterns observed during evaporation of water from the droplet for low, medium and high concentra-
tion of inclusions respectively.



The spatial frequency of interference fringes for s light polarization is nearly insensitive to the refractive index of the droplet
while it exhibits nearly linear dependence on its radius. It is then convenient to determine the radius of the droplet with the
aid of FFT [9]. In this way we obtain the evolution of the droplet radius R(t) (see figure 6). In the following part of this paper
we use R instead of a for effective radius of the particle, reserving a for inclusion radius. On the other hand, the (averaged)
intensity of the scattered light Itot depends on the effective index of refraction of the droplet meff. We assume that for initial R
the concentration of inclusions in suspension is so small that we can put meff =mw (refractive index of water). This enables us
to fix the scaling factor of the fit. We ascribe all the variation of Itot to the changes in the real part of meff and we find meff by
fitting Itot with appropriately averaged Mie scattering formulas. In figure 7 we present the results obtained for three experi-
mental cases, for three values of the radius of inclusion spheres and two types of inclusion material.
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Figure 7. The real part of the effective dielectric function εeff  as a function of the droplet radius R for polystyrene inclusions of a=200 nm,
and silica inclusions of a=300 nm and a=450 nm.

In order to further interpret the results we use the Lorentz effective field theory, following Kreibig [10], but modifying the
model slightly and introducing the local field correction M(R). The effective electric field of light at the position of a given
inclusion can be expressed as a Lorentz local field:

EEE Mielocal ∆+=  ,                                                                 (10)

Figure 6. Evolution of the droplet with spherical inclusions. The radius of the droplet was determined with FFT from the scattering
pattern. Three regions: normal evaporation, stabilization of the radius and the dry “crystal” can be clearly seen.



where EMie is the light electric field inside the spherical water droplet (medium) and ∆E is the field created by polarization
charges on the Lorentz sphere:
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εm is the dielectric function of the medium (water). Polarization P of monodisperse spherical inclusions is
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where n is the number density of inclusions and α is the inclusion particle polarizability. The factor M(R) accounts for modi-
fication of the local field arising from several phenomena like near field effects, multipolar scattering on inclusion and an
effect which seems to be very important – interference of  fields scattered on different inclusions. Modification of polariza-
tion P leads to the modified Lorentz-Lorenz formula:
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where ε is the dielectric function of inclusion. By combining equations (12) and (14), we obtain the modified Lorentz-Lorenz
formula in the form convenient for the present application:
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The simplest case of M=1 is presented in figure 7 - dashed line. In comparison to this, the experimentally obtained results
exhibit a hump that could not be imitated for M=1. This most probably implies that the local light field encounters resonant
conditions. Such resonant behavior is possibly not a near-field effect or an effect of the compound droplet surface, because
we would expect their influence to grow with diminishing droplet radius. For very small f (small amount of inclusions in
water) as well as for f approaching unity (nearly dry crystal composed of former inclusions) M should approach unity. For
the sake of a simple analysis we apply a Gaussian curve type correction for M:
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where P1...P3 are optimization parameters. Than we fit M(R) to the experimental data (solid curves in figure 7). The upper
abscissas are scaled in a dimensionless average distance between neighboring inclusions d/λ where geometrical distance d
between neighboring inclusions is given by d≈2(R3/N)1/3 and λ is the wavelength of light in the water medium. It is worth
noting that the maximum appears, as could be expected, when the distance between neighboring inclusions is of the order of
the wavelength of light in the medium. The variations of position of resonance seem to originate from differences in inclu-
sion sizes and refractive indices. The effect can be understood qualitatively if we consider a resonator consisting of two thick
dielectric plates separated by a dielectric medium: for thicker plates (such as for 450 nm diameter inclusions) a resonance
associated with reflection from outer surfaces of the plates may manifest separately.

4. LIGHT SCATTERING ANALYSIS OF WATER FULLERENE SUSPENSION

In the experiment of the third type we studied light scattering at two wavelengths: red and green, on a droplet of water
fullerene (C60) suspension. We determined the evolution of the droplet radius first. Two examples of such evolution are
shown figure 8.

Figure 8.  Left: the evolution of the radius of C60 water suspension droplet, for high (a) and low (b) initial fullerene contents. The vertical
dashed lines show approximately the boundary of wet particle region. Right: the real part of the effective dielectric function of the com-
posite droplet as a function of droplet radius; circles and dash-dot line, green light scattering; triangles and solid line, red light.
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The experimental data – effective dielectric function as a function of radius - has been fitted with formulas (15) and (16)
where M(R) accounted for two gaussian resonaces this time. The comparison of red and green scattering allowed us to attrib-
ute these resonances to (diminishing) average distance between neighboring scatterers (fullerene nanocrystallites). We also
tried to infer about the size of scatterers involved. For that we needed Vincl which was known only for the case presented in
figure 8a, where the particle got completely dry. We assumed the aggregation to be diffusion limited, though the aggregation
scenario,  is not fully known. Elementary reasoning yields the radius of inclusion to be ~34 nm in that case.

5. CONCLUSIONS

The elastic scattering of coherent light is a powerful tool for the investigation of properties and structure of microdroplets.
Careful analysis of the scattered light enables to find the radius and refractive index of the droplet and follow the evolution
and evolution dynamics of these quantities. Analysing the dynamics of the radius evolution and applying a suitable thermo-
dynamic model enables finding such parameters of the evolution like mass and heat accommodation coefficients, pertaining
to kinetic effects manifesting for very small droplets. On the other hand studying the evolution of effective refractive index,
and utilizing a simple model, enables inferring about the internal structure of the droplet of suspension as well as this struc-
ture evolution.
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