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ABSTRACT

We re-examine the usual expectations for multipolar plasmon modes of a simple-metal sphere within a classical
picture. We show that according to rigorous solution of the eigenvalue problem the complex eigenfrequencies of
plasmon modes can be attributed to the sphere of size larger than the minimum size at given multipolarity, the
feature not known from widely used ”low radius limit”.
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1. INTRODUCTION

Nanoscale metal particles are well known for their ability to sustain collective electron plasma oscillations -
plasmons. When we talk of plasmons, we have in mind the eigenmodes of the self-consistent Maxwell equations
with appropriate boundary conditions in the absence of an external electromagnetic field (e.g.1–3). We reconsider
the eigenvalue problem of a free-electron metal sphere as a function of sphere radius within the rigorous model
(no assumption concerning the particle size). We study the dipole (l = 1) and the higher polarity plasmon
eigenfrequencies ωl(R), l = 1, 2, ...10 as well as the plasmon radiative decay rates ω′′l (R) as a function of the
particle radius R. In particular we re-examine the usual expectation for multipolar plasmon frequencies in the
so called ”low radius limit”.

2. FORMULATION OF THE EIGENVALUE PROBLEM

The system of interest is a sphere of optical and electric properties described by the frequency dependent dielectric
function εin(ω) = 1 − ω2

p/ω2 assumed to have the constant bulk value up to the sphere border. The sphere is
embedded in a nonconducting and nonmagnetic medium of the dielectric function assumed to be εout = 1 in
all numerical illustrations. We are interested in the electrodynamic properties of the sphere in the frequency
regime of anomalous dispersion εin(ω) < 0. The dynamic, linear response of the sphere material is described
within standard optics. We look for solutions of self-consistent Maxwell’s equations with no external sources.
For harmonic, transverse waves (∇ · E = 0) in two homogeneous regions inside and outside the sphere the
wave equation reduces to the Helmholtz equation: ∇2E(r) + q2E(r) = 0, where: q = qin = q0

√
εin inside

the sphere, q = qout = q0
√

εout in the sphere surroundings, and q0 = ω
c . The well known scalar solution of

the corresponding scalar equation (e.g.4, 5) in spherical coordinates reads: ψlm(r, θ, φ) = Zl(qr)Ylm(θ, φ), where
l = 1, 2, ..., m = 0,±1, ...,±l, Ylm(θ, φ) are spherical harmonics, and Zl(qr) are spherical Bessel functions jl(qinr)
inside the sphere and the spherical Hankel functions hl(qoutr) outside the sphere.

We focus our attention on TM mode only. The explicit expressions for the solution with the nonzero radial
component of the electric field Er 6= 0 read:

Er(r, θ, φ) = Blml(l + 1)(qr)−1Zl(qr)Ylm(θ, φ),
Eθ(r, θ, φ) = Blm(qr)−1[qrZl(qr)]′∂Ylm/∂θ,

Eϕ(r, θ, φ) = Blmim(qr sin θ)−1[qrZl(qr)]′Ylm(θ, φ),
Hr(r, θ, φ) = 0, (1)
Hθ(r, θ, φ) = Blm[ε(ω)]1/2(m/ sin θ)Zl(qr)Ylm(θ, φ),
Hϕ(r, θ, φ) = iBlm[ε(ω)]1/2Zl(qr)∂Ylm/∂θ,
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Figure 1. Plasmon oscillation frequencies ωl(R) and radiative damping rates ω′′l (R) as a function of sodium sphere radius
R for l = 1, 2, ...10 resulting from exact radius dependence. The coincidence of the plasmon frequencies ωl(Rmin,l) with
the corresponding value ω0,l obtained within vanishing size approximation (open circles) is illustrated.

Alm and Blm are constants that take different values Ain
lm and Bin

lm inside and Aout
lm and Bout

lm outside the
sphere. The prime indicates differentiation in respect to the argument, which is qinr or qoutr correspondingly.
The continuity relations for the tangential components of the electric and magnetic field lead to:

Bin
lm(zB)−1[zBjl(zB)]′ = Bout

lm (zH)−1[zHhl(zH)]′, Bin
lm

√
εinjl(zB) = Bout

lm

√
εouthl(zH), (2)

where the spherical Bessel functions: jl (z) =
√

π
2z Jl+ 1

2
(z), hl (z) = jl (z) − i · nl(z) =

√
π
2z H

(1)

l+ 1
2
(z) and

nl(z) =
√

π
2z Nl+ 1

2
(z). The functions Jl+ 1

2
(z), H

(1)

l+ 1
2
(z) and Nl+ 1

2
(z) are Bessel, Hankel and Neuman cylindrical

functions of half order of the standard type according to the convention used e.g. in6 . zB = qinR = ω
c R
√

εin

is the argument of the Bessel function jl, and zH = qoutR = ω
c R
√

εout = zB
√

εout/
√

εin is the argument of the
Hankel function for r = R. The continuity relations lead to non-trivial solutions (e.g. non-zero field amplitudes
Blm inside and outside the sphere) only when:

Dl(z) ≡ √
εoutξl (zH) ψ′l (zB)−√εinψl (zB) ξ′l (zH) = 0, (3)

where ψl (z) = z · jl(z) and ξl (z) = z · h(1)
l (z) are Riccati-Bessel functions. In the region of anomalous

dispersion only the TM eigenmodes exist. Zl(qr) = jl(qinr) is then a function of a complex argument. The
boundary conditions are then satisfied only by a discrete set of characteristic complex values zl which are the
roots of the complex function Dl(z) of complex argument z = zl(ω,R). Discretization of complex roots zl means
the discretization of corresponding values ω = Ωl = ωl + iω′′l , l = 1, 2, 3... . They define discrete eigenmode
frequencies ωl and damping rates ω′′l for the TM mode being the sum of corresponding components of (1)
multiplied by eiΩlt = eiωlteω′′l t. The analytic form of zl = zl(Ωl(R), R) is not known, nor the analytic form of
the relation Ωl(R). Let’s notice, that neither zH(ω) nor zB(ω) separately are appropriate to define the set of
discrete characteristic values, contrary to what is suggested in7 .

We solved the dispersion relation (3) with respect to Ωl numerically by treating the radius R as an external
parameter. Riccati-Bessel functions ψl, χl and ξl and their derivatives with respect to the corresponding argu-
ments zH and zB were calculated exactly with use of the recurrence relation: Fl(z) = 2l−1

z Fl−1(z) − Fl−2(z),
F ′l (z) = − l

z Fl(z) + Fl−1(z), with the two first terms of the series in the form:

ψ0(z) = sin(z), χ0(z) = cos(z),
ψ1(z) = 1

z sin(z)− cos(z), χ1(z) = 1
z cos(z) + sin(z). (4)
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Figure 2. The lower range of variation of the arguments of the Bessel and Hankel functions due to the nonapproximated
dispersion relation Dl(z) = 0, examples for l = 1 and l = 8.

We have used the Müller method of secants of finding numerical solutions of the function f(v) = 0 when
one knows the starting approximated values lying in the vicinity of the exact function parameter v,which can
be complex (the ”root” function of the Mathcad program). For given l and given R, the complex eigenvalue Ωl

was treated as the parameter to find, successive values of R were external parameters and where changed with
the step ∆R ≈ 2nm up to the final radius value R = 300nm. The values for ωl(R) and ω′′l (R) were searched
for by starting from approximate values of the root procedure chosen from the range from ωp

√
3 up to ωp

√
2

correspondingly and for negative values of ω′′l . The numerical illustrations have been made for a sodium sphere
described by the Drude dielectric function with ωp = 5.6eV.

3. RESULTS

If one employs the widely used rough approximation retaining only the first term of the expansion (see e.g.2, 8):

jl(z) =
zl

(2l + 1)!!

[
1− 0.5z2

1!(2l + 3)
+

(
0.5z2

)2

2!(2l + 3)(2l + 5)
− ....

]
(5)

hl(z) = −i
(2l − 1)!!

zl+1

[
1− 0.5z2

1!(1− 2l)
+

(
0.5z2

)2

2!(1− 2l)(3− 2l)
− ....

]

where (2l±1)!! ≡ 1×3×5× ...× (2l±1), the dispersion relation (3) is fulfilled for any radius R of the sphere,
and gives real discrete eigenfrequencies Ωl = ω0,l (see Fig. 1):

ω0,l = ωp

√
l

2l + 1
. (6)

According to our rigorous solutions there exist no purely real solution for Ωl: surface plasmons are always
damped, even if the dielectric function εin(ω) is real. Fig. 1 (solid lines with closed spheres) illustrate the
obtained ωl(R) and ω′′l (R) dependencies for l = 1, 2, 3, ...10 starting from ωl(Rmin,l) and ω′′l (Rmin,l) values. For
R < Rmin,l there are no eigenvalues Ωl(R). This behavior of the Ωl(R) dependence is due to the property of the
ξl(zH) function entering the dispersion relation (3) in the range of interest of the variability of the zH parameter.
Figs. 2 illustrate the variation ranges of arguments zB(Ωl(R), R) and zH(Ωl(R), R) of the corresponding functions
ψl(zB) and ξl(zH) down to the limiting value for R = Rmin,l. The non-monotonic behavior at some of the initial
values is notable (circles in Fig. 2). In contrary to the ψl(zB) function, ξl(zH) is divergent approaching the
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Figure 3. The Riccati-Bessel function ψl (zB) and of the Riccati-Bessel function ξl(zH) for the studied range of arguments,
examples for l = 1 and l = 8.

origin, and the region of divergency increases with increasing order l, as illustrated by the examples of l = 1 and
l = 8 in Fig. 3. Divergence of the function ξl(zH) is responsible for the limitation on the existence of roots of the
dispersion relation (3) for R < Rmin,l, as well as for necessity for the nonzero damping rate: ω′′l (Rmin,l) 6= 0 (in
spite that it can be by orders smaller than ωl(Rmin,l) ). Our numerical experiment shows that Rmin,l dependence
on l can be described as Rmin,l ≈ C [l (2l + 1)]3/2 with the proportionality constant C depending on density of
free electrons through plasma frequency value ωp. Rmin,l can be e.g.: Rmin,l=4 = 6nm, but it can be as large as
Rmin,l=10 = 87.2nm (the size parameter 2πR/λ ' 1 for optical wavelength λ).
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