44th ”Jaszowiec” 2015
International School & Conference on the Physics of Semiconductors

WISŁA, POLAND
June 20th – 25th, 2015

Organized by:
Institute of Physics, Polish Academy of Sciences
Faculty of Physics, University of Warsaw
Institute of High Pressure Physics, Polish Academy of Sciences
Departments of Experimental and Theoretical Physics,
Wrocław University of Technology
Institute of Electron Technology

http://info.ifpan.edu.pl/Jaszowiec

Warsaw, 2015
Sponsoring organizations and companies:

Polish Academy of Sciences
Foundation Pro-Physica
U.S. Office of Naval Research Global
US Army Technological Center-Atlantic

This work relates to Department of the Navy Grant N62909-15-1-C135 issued by Office of Naval Research Global. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.

Exhibitors:
Welcome to 44th Jaszowiec Conference

It is my great pleasure to welcome all of you to the 44th Jaszowiec International School and Conference on Physics of Semiconductors. The third consecutive year the Conference is convened in Wisła, in close neighborhood of the Conference original site in Jaszowiec. This Conference continues long tradition of Jaszowiec meetings devoted to physics of semiconductors.

We are honored to host many distinguished scientists, who will present scholarly lectures at the School and plenary lectures at the Conference. I would like to take this opportunity to thank them all for accepting our invitation. My particular thanks are directed to Professor Amano, 2014 Nobel Laureate in Physics who was so kind to accept our invitation to give opening lecture at the Conference.

We are delighted that the number of contributed talks has drastically increased this year, covering many topics, including synthesis, properties and characterization, theory and innovative applications of semiconductor materials and structures. This reflects new efforts of organizers aimed at giving more opportunity for young researchers to present their achievements to wide audience. The poster presentations by their mere number provide a bright perspective for future semiconductor physics in Poland.

I address my warmest words of gratitude to the members of the Program Committee and the International Advisory Committee who graciously used their time and efforts to shape an outstanding program of the School and the Conference. I would like to thank the members of Organizing Committee for their efforts in shaping technical side of the Conference. I would also like to thank the organizations who have generously supported 44th Jaszowiec Conference and I gratefully acknowledge the support of our sponsors.

I wish you all a pleasant time during the Jaszowiec Conference.

Stanislaw Krukowski
Saturday, June 20th, 2015

8:50 – 9:00 Łukasz Kłopotowski – School opening address

INVITED LECTURES (SaPLN-S1 - SaPLN-S3)

9:00 – 11:00 Dmitri R. Yakovlev (Technische Universität Dortmund, Germany)
Spins in Colloidal Nanocrystals

11:00 – 11:30 Coffee Break

11:30 – 13:30 Anna Fontcuberta i Morral (École Polytechnique Fédérale de Lausanne, Switzerland)
Growth and properties of semiconductor nanowires

13:30 – 15:30 Lunch break

15:30 – 17:30 Lorenzo Rigutti (University and INSA of Rouen, France)
Atom Probe Tomography and Semiconductor Nanostructures: Principles, Applications, and Correlative Approaches

19:00 Barbecue

Sunday, June 21st, 2015

INVITED LECTURES (SuPLN-S1 - SuPLN-S3)

9:00 – 11:00 Duncan K. Maude, B.A. Piot, W. Desrat, L.B. Rigal, P. Plochocka
(Laboratoire National des Champs Magnétiques Intenses - Toulouse, France)
The Quantum Hall Effect Revisited

11:00 – 11:30 Coffee Break

11:30 – 13:30 Łukasz Cywiński (Institute of Physics of the Polish Academy of Sciences, Poland)
Interaction of a quantum system with its environment: from linewidth of optical transitions to decoherence of qubits

13:30 – 15:30 Lunch break

15:30 – 17:30 Kirill I. Bolotin (Physics Department, Vanderbilt University, USA)
Mechanics, electronic transport and optics of two-dimensional atomic crystals

19:00 – 20:00 Concert – chamber music performed by young artists, laureates of international music competitions

20:05 Welcoming glass of wine
Monday, June 22nd, 2015

8:50 – 9:00 Stanislaw Krukowski – Conference opening address
OPENING PLENARY LECTURE (MoPLN)
9:00 – 10:00 Hiroshi Amano (Nagoya University, Japan)
Development of GaN based devices and future prospects
PLENARY LECTURES (MoPLN2 - MoPLN4)
10:00 – 11:00 Claude Weisbuch (UCSB Santa Barbara, USA)
Challenges and new concepts of semiconductor light emitters
11:00 – 11:20 Coffee Break
11:20 – 12:20 Martin Kamp (University of Würzburg, Germany)
High-performance interband cascade lasers for the 3-7 µm wavelength range
12:20 – 13:20 Robin Nicholas (Oxford University, United Kingdom)
Quantum Hall effect in graphene: Breakdown, disorder and energy loss rates
13:20 – 15:20 Lunch break

CONTRIBUTED TALKS (MoO1 - MoO7)
Coherent nonlinear spectroscopy of an InAs quantum dot embedded in a photonic trumpet
Propagation, scattering and absorption of exciton-polaritons in GaAs
15:50 – 16:05 J.V. Buller, E.A. Cerda-Mendez, R.E. Balderas-Navarro, K. Biermann, P.V. Santos
Dynamical and Tuneable Modulation of Tamm-Plasmon/Exciton-Polariton Hybrid States using Surface Acoustic Waves
Determination of internal electric fields in binary GaN/AlN multi-quantum wells: experimental and ab initio comparative study
16:20 – 16:35 Break
Composition fluctuations in high indium content InGaN quantum wells - dependence on substrate polarity
Unexpected low-temperature behavior of photoluminescence in InGaN/GaN light emitting diodes. Role of potential fluctuations

17:05 – 17:20 P. Strak, P. Kempisty, K. Sakowski, S. Krukowski
Polar AlN surface under nitrification determined by density functional theory

17:20 – 19:00 Break

CONTRIBUTED TALKS (MoO8 – MoO14)

19:00 – 19:15 V. Delmonte, T. Jakubczyk, K. Nogajewski, M. Koperski, A. Arora, C. Faugeras, W. Langbein, M. Potemski, J. Kasprzak
Exciton inter-valley scattering in monolayers of WSe2

19:15 – 19:30 M. Grzeszczyk, K. Gołasa, M. Pilat, K. Nogajewski, M. Potemski, A. Babiński
Optical signature of few monolayer MoTe2

19:30 – 19:45 K. Gołasa, M. Grzeszczyk, M. Pilat, K. Nogajewski, M. Potemski, A. Babiński
Raman spectroscopy of shear modes in a freestanding few-layer MoS2

Asymmetric composition dependence of lattice dynamics in MoS,Se2–4 layers

20:00 – 20:15 Break

20:15 – 20:30 L. Gladczuk, J.A. Majewski
First-principles study of group IV honeycomb layers and their binary alloys

20:30 – 20:45 A. Jamroz, J.A. Majewski
Ordering in binary BxC1–x, NxC1–x and ternary B0.25N0.25C0.5 honeycomb graphene-like alloys

20:45 – 21:00 M. Pele, W. Jaskólski, A. Ayuela, L. Chico
Electronic Properties of Corrugated Bilayer Graphene

21:00 – 21:05 Break

21:05 – 23:00 MONDAY POSTER SESSION (MoP1 … MoP59)
Tuesday, June 23rd, 2015

PLENARY LECTURES (TuPLN1 - TuPLN4)

9:00 – 10:00 Qi-Kun Xue (Department of Physics, Tsinghua University, Beijing, China)
Atomic-Level Control of Quantum Material Growth: From Quantized Anomalous Hall Effect to Interface-Enhanced High Tc Superconductivity

10:00 – 11:00 Marcin Konczykowski (Ecole Polytechnique, France)
Irradiation induced doping of topological insulators

11:00 – 11:20 Coffee Break

11:20 – 12:20 Sebastian Loth (Max Planck Institute for Solid State Research, Stuttgart, Germany)
Fundamentals of quantum-limited spintronics with atoms on surfaces

12:20 – 13:20 Paweł Prystawko (Institute of High Pressure Physics of the Polish Academy of Sciences, Poland)
Electronic Devices based on 2DEG in Nitride polar structures

13:20 – 15:20 Lunch break

CONTRIBUTED TALKS (TuO1 - TuO7)

19:00 – 19:15 S. Safaei, M. Galicka, P. Kacman, R. Buczek
Quantum Spin Hall Effect in IV-VI Topological Crystalline Insulators

Observation of the de Haas - van Alphen Effect in Topological Crystalline Insulator SnTe

19:30 – 19:45 D. Zdulski, K. Byczuk
Thermodynamic and topological phase diagrams of correlated topological insulators

19:45 – 20:00 P. Potasz, J. Fernandez-Rossier
Robust orbital nanomagnets

20:00 – 20:15 Break

Magnetophotoluminescence of Nanocrystalline Zinc Oxide with Fe3+ Ions

Energy gap variation and valence band mixing in strained (Zn,Mn)Te/(Zn,Mg)Te core/shell nanowires

21:05 – 23:00 TUESDAY POSTER SESSION (TuP1 ... TuP60)
Wednesday, June 24th, 2015

INVITED LECTURES (WePLN1 - WePLN4)

9:00 – 10:00 Rudolf Bratschitsch (Universität Münster, Germany)
Atomically thin semiconductors light up

10:00 – 11:00 Cezary Śliwa (Institute of Physics of the Polish Academy of Sciences, Poland)
The physics of ferromagnetic semiconductors: from symmetry to micromagnetic properties

11:00 – 11:20 Coffee Break

11:20 – 12:20 Benjamin Piot (LNCMI, Grenoble, France)
Using Nuclear Spins To Probe New Electronic States In Low Dimensional Systems

12:20 – 13:20 Steven H. Simon (University of Oxford, United Kingdom)
Topological Matter and Why You Should be Interested

13:20 – 15:20 Lunch break

CONTRIBUTED TALKS (WeO1 - WeO7)

Giant Zeeman effect in semi-magnetic exciton-polaritons

Magneto-photoluminescence studies of charged exciton localization in GaAs/AlxGa1-xAs quantum wells

Ladder of exciton-polariton resonances in magnetic field

Rydberg excitons in cuprous oxide

16:20 – 16:35 Break

Lasing of semimagnetic polaritons in (Cd,Zn,Mg)Te based microcavities

16:50 – 17:05 A. Bojarska, I. Makarowa, P. Wiśniewski, R. Czernecki, T. Suski, P. Perlin
Thermally dependent processes in nitride laser diodes

17:05 – 17:20 A. Skierkowski, J.A. Majewski
Spin-orbit coupling caused spin splitting in doped graphene like layered materials

20:00 Conference Banquet
Thursday, June 25th, 2015

PLENARY LECTURES (ThPLN1 - ThPLN4)

9:00 – 10:00 Aymeric Delteil (ETH Zurich, Switzerland)
Spin-photon interface and distant entanglement of quantum dot spins

10:00 – 11:00 Mateusz Goryca (Institute of Experimental Physics, University of Warsaw, Poland)
Coherent Precession of an Individual 5/2 Spin

11:00 – 11:20 Coffee Break

11:20 – 12:20 Artur Podhorodecki (Institute of Physics, Wroclaw University of Technology, Poland)
Lanthanides doped nanocrystals - synthesis, optical properties and biomedical applications

12:20 – 13:20 Andreas Knorr (Technical University Berlin, Germany)
Ultrafast electron kinetics in graphene

13:20 – 15:00 Lunch break

15:00 – 16:30 THURSDAY POSTER SESSION (ThP1 … ThP60)

CONTRIBUTED TALKS (ThO1 - ThO7)

Atom probe tomography study of quantum dots formed by alloy fluctuation in GaAs/AlGaAs core-multishell nanowires

16:45 – 17:00 G. Michalek, T. Domański, B.R. Bulka, M. Urbaniak, K.I. Wysokiński
Local and non-local resistances of the three-terminal hybrid nanostructures

17:00 – 17:15 K. Roszak, R. Filip, T. Novotný
Decoherence control by quantum decoherence itself

17:15 – 17:30 J. Kobak, T. Smoleński, M. Papaj, A. Golnik, W. Pacuski
Direct Measurement of Zero Field Splitting of a Cobalt Ion in a CdTe/ZnTe Quantum Dot

17:30 – 17:45 Break

17:45 – 18:00 T. Smoleński, T. Kazimierczuk, J. Kobak, M. Goryca, A. Golnik, P. Kossacki, W. Pacuski
Magnetic Ground State of an Individual Fe$^{2+}$ Ion in a Strained Semiconductor Quantum Dot

18:00 – 18:15 V. Křápek, P. Klenovský, T. Šikola
Excitonic fine structure splitting in type-II quantum dots

18:15 – 18:30 K. Sawicki, W. Pacuski, M. Nawrocki, J. Sufficyński
Towards increased extraction of the light emitted by epitaxially grown quantum dots

18:30 – 19:45 Break
CONTRIBUTED TALKS (ThO8 – ThO13)

Virtual Many-particle Excitations in a Polariton Condensate under Nonresonant Pumping

Single photon emitters in exfoliated WSe$_2$ structures

Towards deterministic highly efficient single photon sources based on circular Bragg grating cavities

20:30 – 20:45 Break

20:45 – 21:00 M. Ściesiek, W. Pacuski, J.G. Rousset, M. Parlińska-Wojtan, J. Suffićzyński, A. Golnik

Growth and spectroscopy of coupled ZnTe planar microcavities

21:00 – 21:15 M. Wlazło, J.A. Majewski

First Principles Study of Gas Adsorption Dynamics on Pristine and Defected Graphene

Spontaneous magnetization of composite fermions in second Landau level of graphene

21:30 – 21:45 Stanislaw Krukowski – Conference closing address
1. Z.R. Kudrynskyi, A.P. Bakhtinov, V.B. Boledzyuk, Z.D. Kovalyuk, V.E. Slyn'ko
 Nanocomposite magnetic compounds based on layered semiconductors synthesized by
 electrochemical intercalation in gradient magnetic field

2. V. Romanyuk, N. Dmytruk, O. Kondratenko, M. Taborska, G. Lashkarev, V. Karpyna,
 V. Popovyych, M. Dranchuk, G. Dovbeshko, I. Dmytruk, R. Pietruszka, M. Godlewski
 Optical properties of highly doped ZnO:Al films deposited by ALD process on Si substrate in
 visible and near infrared region

3. M.A. Borysiewicz, M. Ekielski, M. Wzorek, M. Myśliwiec
 Nanocoral ZnO-based Transparent Supercapacitor

4. K. Wichrowska, T. Wosiński, S. Kret, M. Rawski, O. Yastrubchak, S. Chusnutdinow,
 G. Karczewski
 Extended Defects in MBE-Grown p-ZnTe/n-CdTe Heterojunctions

5. K. Paradowska, E. Placzek-Popko, M.A. Pietrzyk, A. Kozanecki
 Electrical Characteristics of p-Si/MgO/ n-Zn$_{1-x}$Mg$_x$O Heterojunction

 Teraherz pulse emission from InGaAs and GaMnAs nanowires

7. P. Klenovský, V. Křápek, J. Humlíček
 Application of InAs/GaAsSb/GaAs type-II Quantum Dots as quantum gates

8. I.G. Orletsky, E.V. Maistruk, V.V. Brus, D.P. Koziarskyi, P.D. Maryanchuk
 The effect of the elemental composition of the spray-solution on the properties of SnS thin films

 Pressure Induced Decrease of the Curie Temperature in (Ga,Mn)As Non-metallic Sample

10. B.S. Witkowski, Ł. Wachnicki, S. Gierałtowska, R. Pietruszka, M. Godlewski
 Highly sensitive photoresistor based on ZnO nanorods grown by the hydrothermal method

 Complex quantum nanostructures as transistors and rectifiers

 L. Rigutti
 Nanoscale Study of AlGaN/GaN multi-Quantum Wells by Comparative Atom Probe Tomography,
 Scanning Transmission Electron Microscopy and Micro-Photoluminescence

13. P. Podemski, M. Pieczarka, A. Maryński, J. Misiewicz, A. Loffler, S. Hofling, S. Reitzenstein,
 G. Sęk
 Carrier Transfer Processes in In$_{0.5}$Ga$_{0.5}$As/GaAs Self-assembled System on Single Dot Level

 Large-scale spatial mapping of photoluminescence from type II InAs/GaInSb W-shaped quantum
 wells in the mid-infrared spectral range
15. L.I. Ovsiannikova, I. Shtepliuk, G.V. Lashkarev, V.V. Kartuzov
 A study of an effect of clusterization of CdO phase in ZnCdO alloys by using Zn_{44}Cd_{4}O_{48} cluster

 Physical properties and band parameters of crystals Cu_{2}ZnSnTe_{4}

17. G.O. Andrushchak, P.D. Marianchuk
 Optical Properties of Hg_{1-x}MnxS and Hg_{1-x-y}MnxFe_{y}S

 Optical Properties of Molecular-beam-epitaxy-grown InAs/InAlGaAs/InP Quantum Dots as 1.55 μm Emitters in Tunnel Injection Lasers

19. K. Sakowski, P. Strąk, S. Krukowski, L. Marcinkowski
 Optimization of InGaN laser diodes based on numerical simulations

20. A. Maryński, M. Pieczarka, P. Podmski, J. Misiewicz, P.D. Spencer, R. Murray, G. Sęk
 Energy transfer processes in InAs/GaAs quantum dot bilayer structure

 Magnetic field control of fine structure splitting in a single quantum dash for entangled photon pairs at telecommunication wavelengths

22. Z. Gumienny, K. Skrzynska, E. Placzek-Popko, K. Gwozdz, L.B. Chang
 Photoluminescence studies of BN/AlN/GaN layer structure on sapphire substrate

 The Metalorganic Vapour Phase Epitaxy Growth of A^{III}B^{V} Heterostructures Observed by Reflection Anisotropy Spectroscopy

24. T. Groń, E. Filipek, G. Dąbrowska, H. Duda, B. Sawicki
 Influence of Cr-substitution on the electrical properties of Fe_{1-x}Cr_{x}SnSbO_{6}

 Pressure dependence of GaN/AlN quantum wells properties by density functional theory with half occupation technique correction

 The UV detectors based on p-n and p-i-n heterostructures (p-ZnO, n-GaN and i-Al_{2}O_{3}): electrical and optical properties

27. V.Yu. Ivanov, A. Dejneka, M. Godlewski
 Photo-ESR and spin-echo photo-ESR investigations of ZnO:Co

 Comparative optical studies of ReS_{2-x}Se_{2-x} alloys
29. M. Kozub, M. Dyksik, M. Motyka, G. Sęk, J. Misiewicz, K. Nishisaka, T. Maemoto, S. Sasa
 Optical Determination of Carrier Concentration in Degenerately Doped InAs Thin Films in
 Radiation Generating Devices in the THz Region

30. D. Ziemkiewicz, S. Zielinska-Raczyńska, G. Czajkowski
 Optical Spectra of Wide Parabolic Quantum Wells

 R. Stepniewski
 Structural and Optical Properties of Boron Nitride Grown by MOVPE

32. E. Pozingytė, A. Rimkus, R. Nedzińskas, B. Čechavičius, J. Kavaliauskas, G. Valušis, L.H. Li,
 E.H. Linfield
 Temperature-dependent Photomodulated Reflectance of InAs/InGaAs Dots-in-a-Well Quantum
 Structures

 Comparison between PbTe and SnTe oxidation processes

34. B. Sadovy, M. Amilusik, G. Staszcak, M. Bockowski, I. Grzegory, S. Porowski, L. Konczewicz,
 V. Tsybylsky, M. Panasyuk, V. Rudyk, V. Kapustiany, E. Litwin-Staszewska, R. Piotrkowski
 The influence of growth direction on electrical and optical properties of GaN:Mg single crystals
 grown by High Nitrogen Pressure Solution method

35. M. Stachowicz, D. Jarosz, M.A. Pietrzyk, J.M. Sajkowski, E. Przedziecka, A. Sarakovsky,
 A. Kozanecki
 Optical investigation of coupled double asymmetric ZnO/MgZn1−xO quantum wells grown on
 nonpolar substrates by MBE

 Pressure induced increase of exciton-phonon interactions in a single ZnO/(ZnMg)O
 quantum well

37. Ł. Bala, P. Kaźmierczak, M. Zając, M. Iwińska, R. Stepniewski, A. Wysmolek
 Determination of low carrier concentration in GaN structures using spatially resolved Raman
 spectroscopy

38. A. Pieniążek, B.S. Witkowski, A. Reszka, Ł. Wachnicki, S. Gierałtowska, M. Godlewski,
 B.J. Kowalski
 Defect-related green emission from ZnO microrods – a cathodoluminescence study

39. A. Piekarska, P. Potasz, A. Wójc
 The Quantum Spin Hall and Quantum Anomalous Hall Effects in a Two-Dimensional Decorated
 Lattice with Spin-Orbit Coupling and Staggered Potential

40. J. Polaczyński, M. Szot, L. Kowalczyk, K. Dybko, A. Witowski, S. Chusnudinow, S. Kret,
 T. Wojciechowski, S. Schreyeck, K. Bruner, C. Schumacher, T. Wojtowicz, L.W. Molenschamp,
 T. Story, G. Karcewski
 Nanoscale shape control and optical properties of epitaxial PbTe/CdTe heterostructures

41. L. Kilanski, A. Avdonin, I. Kurylyszy-Kudelska
 Development of the Alternating Gradient Magnetometer System
42. Y. Yuan, M. Sawicki, M. Helm, S. Zhou
 III-V:Mn Ferromagnetic semiconductors prepared by ion implantation

43. A. Łusakowski, P. Bogusławski, T. Story
 Single ion magnetic anisotropy in disordered Ge_1-xMn_xTe

44. R. Kuna, J. Łażewski, S. Petit, P. Baroni, K. Gas, R. Minikayev, A. Szczerbakow,
 W. Szuszkiewicz
 Neutron scattering studies of phonon dispersion in (Pb,Cd)Te solid solution

 M. Albrecht, X.Q. Wang
 In(Ga)N/GaN short period superlattices

46. M. Baussenwein, F. Gerhard, C. Gould, L.W. Molenkamp
 Investigating NiMnSb-Heterostructures for use in Spin Torque Oscillators

47. S.A. Bercha, K.E. Glukhov, M. Sznajder
 Construction of the adiabatic potential of a symmetric molecule in the vicinity of charged surface of semiconductor

 K. Kopalko, A. Stonert, R. Ratajczak
 Zinc oxide films grown at low temperature – electrical properties and hydrogen contamination

49. G. Grabecki, K. Grasza, A. Avdonin, P. Skupiński, I. Yahniuk, R. Wawrzyńczak, M. Majewicz,
 T. Dietl
 Quantum Transport in Three-Dimensional Dirac Semimetal Cd_3As_2

 Engineering of InGaN/GaN in-plane quantum wires grown along surface atomic steps

51. J. Rybusiński, A. Gardias, I. Kamińska, B. Sikora, K. Fronc, M. Szewczyk, P. Stępień, D. Elbaum,
 A. Twardowski, J. Szczymlyk
 Magnetic properties of Y_3Al_5O_12: Er^{3+},Yb^{3+} up-converting nanoparticles for bio-medical applications

52. L.M. Szulakowska, P. Potasz, A. Wójs
 DFT Studies of Magnetic Properties of MoS(Se) Nanoribbons

53. P.S. Perkowska, M.R. Molas, A. Reszka, K.P. Korona, M. Sobanska, K. Klosek, M. Potemski,
 A. Wysmolek, Z.R. Zytikiewicz
 Magnetoluminescence of excitonic emission in gallium nitride nanowires

 Single (In,Al,Ga)As quantum dot micro-photoluminescence at high surface density of dots – a possible role of Mn doping
55. D.P. Żebrowski, B. Szafran
 DFT study of the graphene nanoribbon quantum dots

56. E. Shylko, J.A. Majewski
 Modeling of zero-field spin splitting of energy bands in atomically thick layered structures

57. N. Gonzalez Szwacki, T. Tarkowski, J. A. Majewski
 2D Boron Allotropes: Structure, Properties, and Computational Hints Towards an Experimental Realization on a Large Scale

58. M. Popielska, M. Marchwiany, J.A. Majewski
 First-principles study of hydrogenated and fluorinated graphene layers on metallic substrates

59. M. Sadek, J.A. Majewski
 Ab initio studies of graphene and BN multilayers
TUESDAY POSTER SESSION (ThP1 – ThP60)

 Photovoltaic Characteristics of Si/ZnO Nanorods/Ag/AZO Plasmonic Cells

 Nanocrystalline Sputter-deposited ZnMgO:Al Film and its Application as a Transparent P-Type Electrode in GaN-Based 385 nm UV LED for Significant Emission Enhancement

 Effect of Misfit Strain in (Ga,Mn)(Bi,As) Epitaxial Layers on their Magnetic and Magnetotransport Properties

4. N. Podolska
 Phase separation and interatomic distances in semiconductors with oxygen in the anion sublattice

5. I. Ozfidan, M. Korkusinski, P. Hawrylak
 Beyond graphene- Dirac Fermions in graphene quantum dots

6. A. Mreńca, B. Szafran
 Transport properties of hydrogen-passivated graphene systems

7. K. Kolasiński, B. Szafrain, M.P. Nowak
 Scanning gate microscopy simulations of the double slit electron interferometer

8. I.G. Orletsky, E.V. Maistruk, V.V. Brus, D.P. Koziarskyi, P.D. Maryanchuk
 Spray pyrolysis deposition and optical properties of Cu₂ZnSnS₄ thin films

9. E.N. Osika, B. Szafran
 Tight-binding calculations of two-electron energy spectra in carbon nanotube n-p quantum dots

 Correct Measurement of AlGaN/GaN and InGaN/GaN Heterostructure Composition by Atom Probe Tomography

11. P. Wojnar 1, M. Wiater, K. Frone, J. Mikulski, Ł. Klopotowski, J. Kossut
 Tuning the emission energy from CdTe and CdSe quantum dots by copper doping

12. J. Aleknavičius, D. Dobrovolskas, G. Tamulaitis
 Spatially Resolved Photoluminescence and Laser Annealing of GaBiAs Epitaxial Layers and Quantum Wells

 Charged exciton confined in an InGaAs/GaAs quantum rod as a single photon emitter at liquid nitrogen temperature
Magnetization of GaMnN nanopowders obtained by an anaerobic synthesis and high-pressure high-temperature sintering

15. J. Kaczmarski, J. Grochowski, T. Boll, M.A. Borysiewicz, A. Taube, W. Jung, E. Kamińska, K. Stiller
Effect of cathode current on trap states density in In-Ga-Zn-O thin films

16. K. Szałowski
Monolayer graphene nanoflakes in electric and magnetic field

17. M.M. Solovan, N.M. Gavaleshko, V.V. Brus, P.D. Maryanchuk
Electrical and photoelectrical properties of MoO₅/n-CdTe heterojunctions

18. M. Papaj, Ł. Cywiński, G. Grabbecki, J. Wróbel, T. Dietl
Numerical Modeling of Nanoconstrictions in Two-Dimensional Topological Insulators

Synthesis and magneto-spectroscopy characterization ZnO core based nanocrystals doped with copper ions

20. K. Ryczko, G. Sęk, J. Misiewicz
Type-II “W-shaped” quantum wells for mid-infrared emission with tensely – strained GaAsSb layer for confinement of holes

A new perspective on graphene based flow sensors

Tailoring the polarization anisotropy of a single InAs quantum dash by a post-growth modification of its dielectric environment

Dielectric properties of REₓW₂O₉ (RE = Pr, Sm-Gd)

Optical and structural properties of ZnO/ZnMgO nanostructures grown on r-plane Al₂O₃ substrates by MBE

Interplay of magnetic and transport properties in Ge₁₋ₓPbₓCr₅Te Composite System

Low temperature preparation of 1 μm x 1 μm HgTe/(Hg,Cd)Te Hall bars

27. A. Ciechan, H. Przybylińska, P. Skupiński, A. Mycielski, P. Bogusławski, A. Suchocki
Metastability of Mn³⁺/Mn²⁺ in ZnO: theory and experiment
28. I. Bragar, Ł. Cywiński
 Dynamics of entanglement of two singlet-triplet qubits in GaAs-AlGaAs heterostructure

29. A.J. Zakrzewski
 Optical Spectra of Shallow Donors in Uniform Magnetic and Electric Field

 Influence of Oxidation Methods on the Volume of PbSnTe Thin Films Consumed during Oxidation

 Quantum transport in microstructures of InAs/GaSb heterostructures

32. B. Jaworowski, P. Potasz, A. Wójc
 Interplay of magnetic field and spin orbit interaction for Lieb lattice

33. A. Kamińska, D. Jarosz, M. Boćkowski, H. Teisseyre
 Hydrostatic pressure studies of gallium nitride doped with beryllium

34. T. Woźniak, M.J. Winiarski, P. Potasz, P. Scharoch, A. Wójc
 Ab-initio studies of geometry, electronic structure and adsorption properties of chosen transition metal dichalcogenides monolayers

35. G. Sęk, D.N. Krizhanovskii, V.D. Kulakovskii, S. Reitzenstein, M. Kamp
 Controlling the Biexciton-Exciton Cascade Kinetics in a Quantum Dot via Coupling to a Microcavity Optical Mode

 Lattice location of deep level impurities in hyperdoped Si by ion implantation and short-time annealing

 Shape of potential fluctuations in InGaN/GaN quantum wells as function of In composition

38. E. Wach, B. Szafran
 Simulations of imaging of the electron density in the planar quantum dots in transition to fractional quantum Hall regime

 Technology and characterization of silicon strip sensors with read-out gate dielectric of stacked SiO_2 and Si_N_x layers

 Bi_2Te_3Se – topological insulator with high resistivity

41. M. Grabowski, M. Szajdjer, J.A. Majewski
 Similarities in the physico-chemistry of the C/BN and SiC/AlN(GaN) interfaces: ab initio studies

42. B.A. Orłowski, A. Pieniazek, K. Goscinski, K. kopalko
 Quasi Fermi Level in Semiconductors Photovoltaic Heterojunction
 Sidewall versus axial growth of CdTe insertions in ZnTe/ZnMgTe core-shell nanowires

 Investigations of Structural, Magnetic and Electrical Properties of Thin Epitaxial MnSi Layers

 Monte Carlo study of interacting magnetic nanoparticles with cubic magnetocrystalline anisotropy

46. P. Onksiak, P. Kaźmierczak, J. Binder, W. Strupiński, R. Stepniewski, A. Wysmołek
 The influence of aqueous solutions on electronic and optical properties of epitaxial graphene grown on SiC

47. T. Słupiński, P. Stawicki, B. Piętka, M. Tokarczyk, G. Kowalski
 Improved (Al,Ga)As-AlAs microcavities grown by MBE with in-situ simulated reflection spectra

 Ordered magnetic MnAs nanocrystals embedded in III-V semiconductor nanowire shells

49. A. Płocharski, M. Klepuzewski, T. Kulka, K. Gołasa
 Optical properties of graphene sheets from various origin

50. J.G. Rousset, R. Rudniewski, A. Janaszek, V. Delmonte, T. Jakubczyk, J. Kasprzak, W. Pacuski
 Antireflective photonic structure with CdTe/(Cd,Zn,Mg)Te QDs containing single Mn ions

51. A. Mielpnik-Pyszczorski, K. Gawarecki, P. Machnikowski
 Quantum well-quantum dot relaxation processes in the presence of the piezoelectric field

52. M. Popielska, M. Sznajder, J.A. Majewski
 First-principles study of energetics and magnetic interaction of Mn dimers on heteropolar zb-SiC/zb-GaN(001) interfaces

53. P. Bugajny, P. Potasz, A. Wójc
 Graphene-like ribbons with spin-orbit coupling in an external magnetic field

 GaAs/Al$_2$O$_3$ High-Contrast Grating structures for vertical cavity surface emitting lasers

55. N. Gonzalez Szwacki, J. A. Majewski
 Structural, Electronic, and Magnetic Properties of the Two-Dimensional Graphene-BN System Studied by First-Principles Simulations

56. I. Nevinskas, R. Butkutė, A. Geižutis, A. Krotkus
 InAs P-N Junction as a Surface Terahertz Emitter

 Spin Relaxation Dynamics of an Individual Co$^{2+}$ Ion in a CdTe/ZnTe Quantum Dot

58. J.C. Tong, P.N. Ni, D.H. Zhang
 InAsSb Photoconductive Infrared Photodetectors at Near Room Temperature
 InGaN Quantum Wells with Increased Internal Efficiency

 Spectroscopy of Excitons in a Single ZnO/(Zn,Mg)O Quantum Well
THURSDAY POSTER SESSION (ThP1 – ThP60)

1. E.O. Melezhik, J.V. Gumenjuk-Sichevska, F.F. Sizov
 Modeling of Electron Mobility in Semi-metallic Hg$_{1-x}$Cd$_x$Te Quantum Wells at T = 77 K: Application to THz Detection

 Correlations of axial and lateral emission of coupled quantum dot – micropillar cavity system in cQED regime

 Tunneling Magnetoresistance of (Ga,Mn)As / GaAs Esaki Diodes

4. M. Krajewski, K. Gołasa, D. Wasik, W.S. Lin, H.M. Lin
 Influence of Iron Nanowires Oxidation on Their Semiconducting Properties

5. B. Sawicki, E. Tomaszewicz, M. Piątkowska, T. Groń, H. Duda, K. Górny
 Correlation between the band-gap energy and the electrical conductivity in MPr$_2$W$_2$O$_{10}$ tungstates (where M = Cd, Co, Mn)

 Layer by Layer Fabrication of Sub-Micron Light Trapping Structures for Dye-Sensitized Solar Cells

7. K. Ptaszyński, B.R. Bułka
 Dynamics and logic operations in two coupled triple quantum dot charge qubits

8. I.P. Koziarskyi, E.V. Maistruk, D.P. Koziarskyi
 The Thickness of the CZTS(Se, Te) Films

9. T.P. Surkova, V.I. Maksimov, M. Godlewski
 Imperfect structure state and superstructures formed in Zn$_{0.95}$Fe$_{0.05}$Se DMS cubic crystal

10. V.V. Brus, I.G. Orletsyk, E.V. Maistruk, D.P. Koziarskyi, P.D. Maryanchuk
 Physical properties of Cu$_2$SnS$_3$ thin films, prepared by the spray pyrolysis method

 Enhancing the transition oscillator strength in type II quantum wells for application in interband cascade lasers

 Anomalous pressure hysteresis due to intercluster interaction in the new high-pressure chalcopyrite phase

13. P. Kopyciński, S. Prucnal, K. Pyszniak, W. Skorupa, J. Żuk
 Influence of Ion Implantation and Annealing Parameters on Synthesis of InAs Nanostructures in SiO$_2$/Si Matrices
Exciton spin polarization relaxation in InAs/InP quantum dashes under optical-phonon-mediated resonant excitation

15. V. Krápek, Z. Édes, P. Klenovský, T. Šikola
Plasmon-enhanced photoluminescence of spatially extended quantum emitters

16. D.V. Savchenko, E.N. Kalabukhova
The ESR study of conduction electrons in heavily nitrogen doped 6H SiC crystals

Spin conductance of nanowires with double coupled quantum dots

18. A.I. Mostovyi, M.M. Solovan, V.V. Brus, P.D. Maryanchuk
Optical properties thin films of Cu$_2$ZnSnSe$_4$

Transport properties of the two-dimensional electron gas in modulation doped CdTe quantum well structures

Magnetic, kinetic, optical properties and band parameters of crystals Cu$_2$ZnSnSe$_2$Te$_2$

Temperature damping of ESR and FMR for nanocomposites Co/Al$_2$O$_3$ in the superparamagnetic and ferromagnetic states

Thermally evaporated HgTe layers as planar ohmic contacts for CdTe and CdMnTe quantum wells

23. A.A. Golovatenko, M.A. Semina, A.V. Rodina, T.V. Shubina
Density of states and photoluminescence spectra in the dense arrays of CdSe/ZnSe quantum dots with Gaussian potential profile

24. B.K. Kuśmierz
Search for Jack ground states of two-body hamiltonians

25. T. Groń, E. Filipiak, M. Piz, Z. Kukula, S. Pawlus
Dielectric permittivity of Nb$_6$V$_3$Sb$_3$O$_{25}$

Current-voltage characteristics of n-TiN/n- Hg$_{1-x}$Cd$_x$Me$_2$Se heterojunctions

27. M. Brzezińska, P. Potasz, A. Wójc
Exact diagonalization studies of topologically non-trivial flat bands with interactions

28. P. Strak
Accurate band gap model based on density functional theory with half occupation technique correction for application to nitrides quantum heterostructures
29. M. Inglot, V.K. Dugaev, J. Barnaś
 Thermoelectricity and thermospin induced by the temperature gradient in ballistic graphene

30. T. Palutkiewicz, M. Wołoszyn, B.J. Spisak
 Influence of the gate voltage and geometrical parameters on the transport characteristics of core-multishell nanowires

 Time dependent current through a quantum dot-ring nanostructure

 Optical properties of GaN nanowires grown by plasma assisted molecular beam epitaxy on Si(111) substrates with amorphous Al2O3 buffers

33. K.P. Korona, D.A. Ziółkowska, P.A. Dróżdż, M. Michalska, L. Lipinska
 Diffusion and conductivity in lithium titanium oxide

34. J. Pers, M. Grodzicki, A. Ciszewski
 Morphology of thin films containing Ni-Ga intermetallic compounds formed on GaN(0001)

35. M. Gawelczyk, P. Machnikowski
 Spin dynamics and magneto-optical response in charge-neutral tunnel-coupled quantum wells

 Low-temperature cathodoluminescence investigations of GaN nanowires with AlxGa1-xN insets

37. M. Bieniek, P. Potasz, A. Wójc
 Magnetic field in topological insulator quantum dots

38. M.V. Rakhlin, S.V. Sorokin, I.V. Sedova, A.A. Usikova, S.V. Gronin, K.G. Belyaev, S.V. Ivanov, A.A. Toropov
 Micro-Photoluminescence Studies of CdSe/ZnSe Quantum Dot Structures with and without Sub-monolayer CdTe Stressor

 Photoelectrical properties of p-CdZnTe/i-CdTe/n-CdTe diodes with PbTe nanoinclusions

40. A. Łusakowski, W. Szuszkiewicz
 Ab initio studies of magnetic anisotropy energy in highly Co-doped ZnO

 Magnetic and structural properties of MBE grown wurtzite (Ga,Mn)As shells in a radial quantum well nanowire heterostructures

42. M. Pilat, K. Golasa, M. Grzeszczyk, A. Babiński
 Raman Spectroscopy of Guanajuatite – Natural Topological Insulator

43. S.P. Łepkowski, W. Bardyszewski, D. Rodak
 Topological Quantum Phase Transition in InN/GaN Quantum Wells under Hydrostatic Pressure
Mechanisms of excitonic emission in ultrathin CdSe layers embedded in ZnSe

45. L.Yu. Kharkhalis, K.E. Glukhov, M. Sznajder
Electron-deformational Phase Transitions in a TlGaSe2 Layered Crystal

46. B.A. Orlowski, A. Reszka, E. Guziewicz, B.J. Kowalski
Rare Earth 4f electrons in semiconductors valence band

47. E. Guziewicz, R. Ratajczak, D. Snigurenko, M. Stachowicz, T.A. Krajewski, A. Stonert, A. Turos
Structural, optical and electrical properties of ZnO single crystals and epitaxial films implanted with Er and Yb

48. K. Ubych, P. Kaźmierczak, K. Golaśa, M. Grzeszczyk, W. Strupiński, A. Babiński, A. Wysmolek
Optical properties of graphene-MoS2 heterostructure

49. K.A. Kluczyk, W.A. Jacak
Surface plasmon resonance in metallic nano-particles

High quality factor microcavities with CdSe/(CdMg)Se quantum wells

51. M.Ś. Świderski, M.Z. Zieliński
Perturbative treatment of electric field in semiconductor quantum dots

52. M. Król, R. Mirek, K. Lekenta, K. Nogajewski, M. Koperski, P. Kossacki, A. Babiński, M. Potemski, J. Szczytko, B. Piętka
Optical cavities for WSe2 monolayers

53. J. Andrzejewski
Electronic Structure Calculations of InP-Based Coupled Quantum Dot – Quantum Well Structures

54. W.J. Pasek, M.P. Nowak, B. Szafran
Spin Exchange Energy For A Pair Of Valence Band Holes In Artificial Molecules

55. M. Marchwiany, M. Popielska, A. Niegowski, J.A. Majewski
Accurate exact-exchange Kohn-Sham real space formalism

56. A. Siklitckaia, J.A. Majewski
Ab initio molecular dynamics studies of CO2 and CH4 adsorption at CaCO3 (10-14) surface

57. A. Szumska, A. Warchulski, J.A. Majewski
Looking for graphene like material for thermoelectric applications

Ferromagnetic resonance study of magnetic anisotropy in Ge1-xMnxTe layers on KCl (001) substrate

Manipulation of carrier concentration in GaN:Si-based metal-oxide-semiconductor structures
60. K. E. Oksuz, S. Sen, U. Sen

Raman scattering and dielectric investigations of B₂O₃ doped Ba(Ti₁₋ₓZrx)O₃ ceramics
Spins in Colloidal Nanocrystals

D. R. Yakovlev

Experimental Physics 2. TU Dortmund University, 44221 Dortmund, Germany and Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

In this lecture spin related phenomena in colloidal nanocrystals (NCs) will be presented, including spin structure of neutral and charged excitons (trions) and spin dynamics of the excitons and carriers. Introduction to the optical properties of the colloidal nanocrystals will be given in their comparison with epitaxially grown quantum dots. Various types of colloidal nanocrystals will be considered: core only, core-shell [1-2], dot-in-rod [4-5], platelets [3] based on II-VI semiconductors, mainly CdSe/CdS. Specifics of the exciton energy structure and its influence on the recombination dynamics at different temperatures and strong magnetic fields will be considered with illustrating by experimental results.

Main part of the lecture will be devoted to spin physics in colloidal nanocrystals. Here we report on experimental and theoretical studies of the trion and exciton spin dynamics in core/thick-shell CdSe/CdS NCs. We have shown recently that photo-excitation of core/shell CdSe/CdS nanocrystals (NCs), which shell thickness exceeds 4 nm, leads to a single electron charging of NCs [1,2]. Time-resolved photoluminescence measurements were performed at low temperatures and in high magnetic fields up to 15 Tesla. From the decay of the photoluminescence intensity the trion radiative time of 8 ns was measured. It is independent of the magnetic field reflecting the fact that the trion ground state is always optically bright (i.e. allowed in electric-dipole approximation). This is in strong contrast to the exciton states in NCs which dynamics is controlled by a competition of the bright and dark states, which can be mixed either by magnetic fields or thermally.

Spin relaxation time of excitons is shorter than a nanosecond and are limited by time-resolution of the used setup. While for the trions it is very long up to 60 ns and it decreases by about two orders of magnitude down to 1 ns in strong magnetic field of 15 Tesla.

Theoretical description of the polarization dynamics is complicated by the fact that we study an ensemble of CdSe/CdS nanocrystals with random orientation of their hexagonal axes to the magnetic field direction. The trion Zeeman splitting is controlled solely by the hole g-factor, which is strongly anisotropic: it is maximal for NCs oriented along magnetic field and zero for NCs oriented perpendicular to the field. However, the magnetic field mixing of the hole states, which accelerates spin relaxation in trion, is most efficient for the perpendicular orientation. The developed model approach accounts for all these conditions.

Growth and properties of semiconductor nanowires

Anna Fontcuberta i Morral

Laboratory of Semiconductor Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Nanowires are one-dimensional crystals with a tailored diameter between few and few tens of nanometer. Thanks to this special morphology and the small dimensions, they have been proposed as advanced building blocks for a manifold of applications ranging from chemical or biological sensors to energy harvesting. Among the different materials that have been synthetized in the form of nanowires are compound semiconductors. This has allowed for the first time the defect-free integration of III-V semiconductors on the silicon platform. The perspectives are numerous, ranging from the integration of the functionality of III-Vs (high mobility, bright optical emission…) with the CMOS technology.

In this seminar I will present the state of the art of nanowire growth, with a special emphasis in the growth of ultra-pure III-As nanowires by molecular beam epitaxy [1,2]. I will discuss the growth mechanisms as well as the issues allowing the growth of III-V nanowires on silicon. I will continue by expanding the possibilities of this technique for creating other kinds of heterostructures on the nanowires themselves. These will include prismatic quantum wells, quantum dots and crystal phase heterostructures [3-6]. The optical properties of the quantum heterostructures are characterized by micro-photoluminescence and cathodoluminescence at temperatures down to 4.2K.

Finally, the application of nanowires for next generation solar cells and the possible contribution to the generation of solar fuels will be discussed [7,8].

Atom Probe Tomography and Semiconductor Nanostructures: Principles, Applications, and Correlative Approaches.

Lorenzo Rigutti

Groupe de Physique des Matériaux, UMR 6634 CNRS, University and INSA of Rouen, Normandie University, 76800 St. Etienne du Rouvray, France

I – Principles and Applications of Atom Probe Tomography. Laser-assisted Atom Probe Tomography (La-APT) is a technique based on the field-evaporation of ions from the surface of a sharp tip [1]. This process is triggered by a femtosecond laser pulse and the evaporated ion is detected by a time-of-flight and position sensitive detector (Fig. (1)). This allows for a controlled erosion of the specimen tip and for a 3D reconstruction of the elemental composition of the evaporated volume. In this part of the lecture, I will introduce the principles of the technique, the protocols of sample preparation, and some selected results of its application to semiconductor nanostructures. A part of the lecture will be dedicated to some limitations of the technique, such as possible reconstruction artefacts and compositional biases: while the atom prober must take them into account, they also may teach us a lot about surface physics in high electric field [2].

II – Combining Atom Probe with other techniques. Atom Probe can be combined with other experimental techniques, such as Transmission Electron Microscopy (TEM) and Micro-Photoluminescence Spectroscopy (µPL) applied to semiconductor quantum wells, quantum dots and nanowires. This can be done with different degrees of accuracy: (i) comparative experiments, in which different parts of the same macroscopic samples are analyzed with different techniques [3] (Fig. (2)), (ii) correlative experiments, in which the same nanoscale object is analyzed by different techniques [4] and finally, a perspective on (iii) coupled, in-situ experiments, in which APT and µPL could be performed within a single experimental setup. For each of these approaches, I will explain through state of the art examples the information that could be retrieved from the system under study.

Figure (1) Laser-assisted field ion evaporation and detection. Figure (2) (Left) density plot of AlGaAs alloy composition: the red arrow points to a quantum dot whose electronic states (right) can be calculated directly based on the atom probe measurement [3].

The Quantum Hall Effect Revisited

Duncan K. Maude 1, Benjamin A. Piot1, Wilfried Desrat2, Laurent B. Rigal1 and Paulina Plochocka1

1Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-INSAS-UPS, Grenoble and Toulouse, France
2Laboratoire Charles Coulomb, Université Montpellier, France

In a perpendicular magnetic field, the Hall resistance of a two dimensional electron gas (2DEG) of carrier density n_s, exhibits quantized plateaux $\rho_{xy} = h/\nu e^2$ in the vicinity of integer Landau level filling factors $\nu = n_s/(eB/h)$. Simultaneously, the resistivity ρ_{xx} exhibits a zero resistance state. This can be understood as follows: A magnetic field quantizes the density of states (DOS) into Landau levels of degeneracy eB/h per spin and energy $E_n = (n + 1/2)\hbar \omega_c$ where $\omega_c = eB/m^*$ is the cyclotron frequency and $n = 0, 1, 2, ..$ is the orbital quantum number. As the carrier density n_s is fixed, the position of the Fermi level is an oscillatory function of magnetic field. Whenever the Fermi level lies in a gap in the DOS, we have $\rho_{xx} \approx \sigma_{xx} \propto \text{DOS}(E_F) \rightarrow 0$. For example, at even filling factors the Fermi level lies in the cyclotron gap while for odd filling factors E_F lies in the spin Zeeman gap ($E_z = g\mu_B B$).

In this talk I will show that, while this single particle picture provides an extremely useful description of the integer QHE, it actual misses most, if not all of the physics. In GaAs/AlGaAs, the most widely studied system today, the small value of the Landé g-factor $\simeq -0.44$ means that the Coulomb interaction dominates over the single particle Zeeman energy. Moreover, in reality the Fermi level jumps between Landau levels and so never actually “lies in the gap”. Disorder has to be invoked, which broadens the Landau levels, and the Fermi level is “in the gap” whenever it lies in the localized states present in the tails of the Landau levels. In a perfect sample without disorder the QHE would not exist. Magnetotransport measurements reveal that the opening of the spin gap with increasing magnetic field is controlled by the competition between the exchange energy gain, and the energy cost of flipping spin due to the disorder broadening of the Landau levels. This can be seen as a magnetic field induced Stoner transition (Quantum Hall ferromagnet) since the single particle Zeeman energy plays no role. On the other hand, circular polarization resolved optical absorption measurements show that the quantum Hall ferromagnet at filling factor $\nu = 1$ is remarkably fragile; the spin polarization of the system collapses rapidly with a small change in filling factor or increases in temperature. Finally, I will demonstrate that the phase diagram for the breakdown of the QHE, namely the magnetic field width B_c of the $\rho_{xx} = 0$ state versus temperature resembles that of a HTc superconductor and gives information on the Landau level line shape and FWHM.

The fractional QHE arises due to gaps in the DOS induced by electron-electron interactions. The composite Fermion model of Jain provides remarkable physical insight, naturally explaining for example the existence of spin reversed fractional states. Nuclear magnetic resonance (NMR) measurements give direct access to the local electronic spin polarization. The NMR signal is Knight shifted due to the contact hyperfine interaction in an analogous way to the Overhauser shift seen in ESR measurements. In QHE samples, the small number of nuclei in contact with the 2DEG makes classical NMR extremely difficult. We have developed resistively detected nuclear magnetic resonance (RDNMR) which relies on the sensitivity of the 2DEG resistivity to the nuclear magnetic field B_N. As an example, I will show that RDNMR is a powerful tool to probe the spin polarization of both integer and fractional quantum Hall states.
Interaction of a quantum system with its environment: from linewidth of optical transitions to decoherence of qubits

Łukasz Cywiński

Laboratory for Cryogenic and Spintronic Research, Institute of Physics, Polish Academy of Sciences, Warszawa, Poland

During the first course on quantum physics one learns only about pure states (“wavefunctions” in the case of a single electron) of small systems. The same holds most often for the second course on more advanced quantum mechanics. This creates an impression that small quantum systems (for example electrons in quantum dots) are typically in pure quantum states. This is not the case: unless special care is devoted to preparation of the system, its state is typically a mixed one, described by a density matrix, not by a state vector. This is due to the fact that pure states can be used to describe only closed (i.e. uncoupled from the rest of the world) systems, while it is extremely hard to keep any system (even a single electron) truly closed. All the realistic quantum systems are open to some degree, and interaction with their environment (which leads to decoherence of pure quantum states) is always relevant for their description. This is an especially salient point when dealing with small quantum systems (e.g. qubits) embedded in a solid-state environment.

In this tutorial I will introduce the basic notions of quantum mechanical description of open quantum systems. I will start with a density matrix of a two-level system (e.g. a spin of a localized electron, or ground and excited state of a quantum dot), and then discuss Rabi oscillations due to external periodic driving, the appearance of Fermi Golden Rule for transition probability due to the openness of the system, spontaneous radiative recombination due to coupling to vacuum fluctuations, Bloch equations (and conditions under which they can be used), and energy relaxation and dephasing due to classical noise. While doing this I hope to explain concepts such as motional narrowing and dephasing due to a quasi-static bath. Examples from experiments on solid state based qubits (mostly quantum dots) will be used for illustration. If time permits, I plan to finish by explaining how a qubit might be turned into a spectrometer of the environmental noise.
Mechanics, electronic transport and optics of two-dimensional atomic crystals

Kirill Bolotin

Vanderbilt University, Nashville TN, USA

Two-dimensional atomic crystals (2DACs) are materials that are only one or few atoms thick. Graphene, a two-dimensional form of carbon, was the first such material to be discovered. Now, almost ten years later, hundreds of metallic, semiconducting, ferroelectric, and topological insulator 2DACs such as monolayer boron nitride, monolayer molybdenum disulfide (MoS2), and phosphorene are known. The best conductors of heat and electricity, the strongest materials ever measured, and the likeliest candidate for high-temperature superconductivity belong to the family of 2DACs. Potential applications of these materials range from ultrathin membranes and coatings to transparent screens and electronic components. In this talk, we explore some aspects of physics of 2DACs we particular emphasis on phenomena related to electron wavefunction confinement and electron-electron interactions.

First, we touch upon mechanics of graphene and other 2DACs. We will discuss the experimental approaches designed to bend, stretch, cut, and fold atom-thick sheets that are 2DACs. Very high strength of carbon-carbon bonds in graphene will be shown to lead to extraordinary in-plane stiffness and breaking strength of that material. We will also discuss the modification of effective mechanical constants of 2DACs due to out-of-plane crumpling.

Second, we discuss electrical transport in 2DACs focusing on experimental approaches to reduce carrier scattering and increase carrier mobility. Different symmetries of clean low-scattering 2DACs will be shown to lead to topological phases seen in transport experiments. In particular, we cover minimum conductivity, weak localization, and Quantum Hall effects in graphene and spin/valley Hall effect in monolayer molybdenum disulfide (MoS2).

Finally, we review optical properties of 2DACs. Strong interaction between electrons resulting from miniscule thickness of 2DACs will be shown to lead to formation of tightly bound electron-hole pairs or excitons. These excitons, in turn, strongly modify optical response and optoelectronics of 2DACs.
Development of GaN based devices and future prospects

Hiroshi Amano

Graduate School of Engineering, Nagoya University,
C3-1 Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
amano@nuee.nagoya-u.ac.jp

Historically, research on GaN as a luminescent material started in the late 50s. Professor Grimmeiss and his group submitted a patent for a GaN luminescent system in 1960. In 1971, Professor Pankove developed the first GaN-based blue LEDs, which were of the metal-insulator-semiconductor (MIS) type LED. Following his success, many research groups unsuccessfully tried to commercialize Pankove-type LEDs in the 70s. Polish research group greatly contributed in understanding the thermodynamic properties of GaN, especially how difficult it is to grow GaN from solution.

In the 80s, the accumulation of several breakthroughs, such as the growth of high-quality crystals on a foreign substrate, p-type conduction by Mg doping followed by a special treatment, and the growth of InGaN layers led to the commercialization of GaN-based blue LEDs. It is worth explaining how blue LEDs have changed our lives. Portable games machines such as Game Boys and cellular or smart phones are very familiar items, especially to young people. Until the end of the 90s, all the displays of portable games machines and cellular phones were monochrome. Therefore, it should be emphasized that the younger generation can now enjoy full-color portable games and cellular or smart phones because of the emergence of blue LEDs. At the same time, some people are concerned about the increase in cellular phone or smart phone addiction.

The turning point came in 1996. In combination with phosphors, blue LEDs came to be used as a white light source and also used in general lighting. For general lighting, I would like to explain how InGaN LEDs can contribute to improving the electricity situation and saving energy, especially in Japan. Many people remember the great earthquake of east Japan and the meltdown of the nuclear power plants in 2011. Currently, none of the 48 nuclear electricity generators in Japan are in operation. Before 2011, about 30% of Japan’s electricity was generated by nuclear reactors. Thus, we have to find a way to adopt the loss of 30% of Japan’s electricity generating capacity. A research company in Japan has predicted that by 2020 more than 70% of general lighting systems will have been replaced with LED lighting, by which we can reduce Japan’s total electricity consumption by about 7%. More importantly, we can develop and supply compact lighting systems to the younger generation, especially children in remote areas without access to electricity. Using an LED lighting system with a solar cell panel and a battery, children can read books and study at night.

In this presentation, I would like to outline the history of the development and future prospects of nitride-based light-emitting devices, especially devices using the visible long-wavelength and UV regions. Also, applications to power devices will be discussed.
Challenges and new concepts of semiconductor light emitters

Claude Weisbuch1,2

1 Laboratoire de la Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, France
2 Materials department, UCSB, Santa Barbara, CA, USA

The switch to high efficiency lighting is enabling to tap a huge reservoir of energy, but it requires light emitting diodes (LEDs) to reach efficiencies higher than the dominant fluorescents lamps, to have a lower cost of ownership. Beyond efficiency, major demands on LEDs are full visible spectrum coverage and low cost. To achieve this, LEDs have to perform at the physical limits of electricity-to-light conversion efficiency, requiring mastering of the intrinsic electrical and optical properties of the materials, and of the electromagnetic properties of the device structure. Today’s LEDs operate in the blue range with both 90%+ internal quantum efficiency (IQE) and light extraction efficiency (LEE). The progress in the past decade has been remarkable, in particular on LEE, with solutions based on geometrical optics or wave optics to overcome the issue of total internal reflection at the semiconductor-air interface. IQE, however, is still not at the desired level: the 90%+ performance is only obtained in the blue/violet spectral range at relatively low carrier injection. The required operation at high current densities, a prerequisite to lower lamp costs, leads to nonlinear phenomena which diminish the IQE. Many measurements point to an Auger non radiative recombination mechanism as the main cause of droop. The “green gap” of high efficiency performance in the green-yellow spectral range presents major hurdles, related to crystal growth conditions and defect formation at high In contents. Increasing strain with In contents also induces fundamental limitations related to large internal electric fields in c-plane grown LEDs. While the bulk of LEDs produced today are based on the progress of c plane QW LEDs grown on sapphire substrates, a concept originating in the mid-nineties, it is desirable to explore other avenues to reach performance beyond that materials system. I will introduce some of the paths under study: designing better LED structures leading to diminished carrier densities at high current injection, avoiding c-plane limitations by new substrates (semipolar and non polar GaN), using new concepts of active materials (quantum wires, QWRs, quantum dots, QDs), relying on lasers as alternatives to LEDs, switching to large Si substrates, ...
High-performance interband cascade lasers for the 3-7 µm wavelength range

R. Weih¹, M. Dallner¹, J. Scheuermann², L. Nähle², M. Fischer², J. Koeth², S. Höfling¹, and M. Kamp¹

¹Technische Physik, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
²nanoplus GmbH, Oberer Kirschberg 4, D-97218 Gerbrunn, Germany

A multitude of absorption lines of important gases is located in the infrared region between 3 µm and 6 µm, making it very interesting for tunable diode laser spectroscopy (TDLS). However, the realization of semiconductor lasers that operate cw at room temperature (RT) in this region has been quite challenging. Extending the emission of diode lasers beyond 3 µm is difficult due to the strong increase of Auger recombination and loss of carrier confinement. Quantum cascade lasers on the other hand perform very well above 4 µm, but the available conduction band offsets limit their emission on the short wavelength side. In recent years however, several breakthroughs have allowed the demonstration of good laser performance in the 3-6 µm region [1]. The most significant development in this regard is the interband cascade laser (ICL). This device combines features from diode and quantum cascade lasers and has shown good performance (including cw operation at RT) in the 3-5.5 µm range after major design optimizations [2]. In my talk, I’ll discuss recent developments of GaSb- and InAs-based ICLs. These include the demonstration of ICLs with very low threshold current densities [3], distributed feedback lasers with output powers larger than 20 mW and operation up to 80°C (see fig. 1a), single mode emission at 5.2 µm (see fig. 1b) for sensing applications [4], distributed feedback lasers based on lateral metal gratings [5] and emission at room temperature at wavelengths up to 7 µm [6].

Fig. 1: a) Output power characteristic of a 3.5 µm ICL-DFB at different temperatures
b) Output power characteristic and emission spectrum of an ICL-DFB emitting at 5.2 µm

Quantum Hall effect in graphene: Breakdown, disorder and energy loss rates

R.J. Nicholas¹, J. Huang¹, J. A. Alexander-Webber¹, D.K. Maude², T. J. B. M. Janssen³, A. Tzalenchuk³,⁴, V. Antonov⁴, T. Yager⁵, S. Lara-Avila⁵, S. Kubatkin⁵ and R. Yakimova⁶

¹Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K.
²Laboratoire National des Champs Magnetiques Intenses, Ave de Rangueil, Toulouse, France
³National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
⁴Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
⁵Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-412 96 Göteborg, Sweden
⁶Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping, Sweden

The quantum Hall effect in epitaxial graphene can show remarkable behavior, with a quantum Hall plateau which extends from 1 to 20 T and even up to 50T in extreme cases (Fig. 1), [1], as well as showing remarkably high breakdown current densities of up to 40A/m²[1]. We will report how the breakdown currents depend on temperature and magnetic field and show behavior suggestive of a phase transition between the quantum Hall and dissipative states of the 2D electron gas. The behaviour becomes progressively more dramatic as the system approaches the Dirac point and we have analysed both the quantum and classical Hall effect from 1.5 up to 300K. The carrier density derived from the low-field Hall coefficients for a two-carrier system shows a quadratic increase as a function of temperature (Fig. 1c), which can be well modelled by intrinsic excitation combined with disorder-induced electron-hole puddles [2] where the potential variation is found to be about 12 meV. In the quantum Hall state we observe a resistivity which shows both variable range hopping [3] (VRH), and thermally activated conduction. By fitting the longitudinal conductivity at low temperatures we directly probe the density of states at the Fermi energy and at higher temperatures, the thermal activation regime probes the position of the Fermi energy and the overall behavior gives the total width of the Landau levels which is in remarkable agreement with the zero field result.

Fig. 1: (a) Quantum Hall effect and resistivity for a sample with a Fermi level close to the dirac point.
(b) The hopping parameter Tₑ and the density of states at the Fermi level as a function of magnetic field,
(c) The temperature dependence of the carrier density. (d) The resistivity fitted to a combination of VRH and activated conduction.
Molecular beam epitaxy (MBE) has been well-known as a powerful technique for preparing semiconductors and heterostructures. Combining MBE with scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) can even push its power to an unprecedented level in material quality control. We apply MBE-STM-ARPES to topological insulators and high Tc superconductors, which have recently attracted extensive attention. We show how quantized anomalous Hall effect could be achieved by atomic-level control of band-engineered and magnetically doped topological insulators with MBE-STM-ARPES. We then show the discovery of interface enhanced high temperature superconductivity in single unit-cell FeSe films on SrTiO$_3$ using the same approach. Implications on exploring other exotic quantum phenomena such as Majorana fermions in topological insulators and on searching for new high temperature superconductors will be discussed.
Native defects retained in the crystal in the growth process can be determinant for their physical properties. In particular vacancies are in most cases electrically active, providing free charge to the system and acting as scattering centers. At room temperature and below their concentration is metastable and determined by migration energy. Irradiation with energetic particles allows controlled introduction of native defects and tuning of electronic transport properties of materials. This procedure can be used to turn the material to the charge neutrality state in the bulk and control metal to insulator transition.

In my presentation, I will review the methods of particle irradiation focusing on low temperature electron irradiation producing vacancy – interstitial (Frenkel) pairs and on swift heavy ion irradiation (in GeV range) leading to local amorphisation along particle trajectory.

In the second part of my talk, I will give the examples of use of particle irradiation for control of mean free path of carriers and for test of mechanisms of superconducting pairing mechanism.

To illustrate doping effect I will present the results of ongoing research on the tuning by energetic particle irradiation of electronic transport properties of topological insulators of two families: (1) time reversal symmetry protected Bi$_2$Te$_3$ and Bi$_2$Se$_3$ and (2) crystal symmetry protected PbSn$_{x}$Se$_{1-x}$. Two-step procedure consisting of irradiation at low temperature by 2.5 MeV electrons followed by appropriate annealing allows the reduction of the bulk conduction to the point that surface channel become dominant. This is demonstrated by the measurements of magneto resistance and of it angular dependence. Angular Resolved Photoemission Spectroscopy performed on the irradiated crystals proves the persistence of Dirac cone feature and immunity of the topologically protected states to the irradiation-induced disorder.
Fundamentals of quantum-limited spintronics with atoms on surfaces

Sebastian Loth¹,²

¹ Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
² Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany

Spintronics use nanoscale magnetism for information technology and sensing applications. Shrinking the magnetic elements to a size where their magnetic moment becomes quantized may enable new applications that harness quantum mechanical effects. Inherent to this dream is the requirement to couple few-atom nanomagnets to the macro-world via electric leads. Recent advances in scanning tunneling microscopy make it possible to study the interaction between metallic surfaces and magnets even at this extreme scale of individual atoms.

We use low-temperature scanning tunneling microscopy to create few-atom nanostructures of our own design atom by atom. A combination of spin-polarized imaging and fast electronic spectroscopy at GHz speed allows us to access the nanosecond-fast magnetization dynamics of these nanostructures [1]. I will introduce how the interaction between the nanostructures and the metallic surface changes the nanomagnets’ spin ground states [2] and show that exchange interaction between individual atoms can be used to create a spin sensor that utilizes the quantum-mechanical mixing of spin states as sensing mechanism [3]. This effect enables non-local measurements of the spin and elucidates controlled engineering of atom-sized spintronic model systems.

Electronic Devices Based on Two-Dimensional Electron Gas (2DEG) in Nitride Polar Structures

Pawel Prystawko

Institute of High Pressure Physics, PAS Sokolowska 29/37, 01-142 Warsaw, Poland
and
TopGaN Ltd, Sokolowska 29/37, 01-142 Warsaw, Poland

Wide bandgap semiconductor system of AlGaN/GaN has a number of features important in manufacturing of electronic devices: strong interatomic bonds, high electron mobility, high electron saturation drift velocity, high critical electric field, as well as thermal stability. Planar devices with 2DEG formed in polar nitride structures show excellent performance in high power, high frequency devices, as well as in power switching. However, these devices are still far from the GaN/AlGaN material system physical limits [1].

In my lecture, I will present an advantage of piezoelectric and spontaneous polarization fields in formation of 2DEG used in HEMT (High Electron Mobility Transistors) structures and also in current aperture vertical electron transistors (CAVET) which have been less investigated so far but they could get closer to material system limitations [2].

State-of-the-art devices demonstrated already have power density above 30W/mm and f_{MAX} above 300GHz for RF HEMTs and switching capability of 10kA/cm² in vertical devices.

I will show achievements of our Lab, including:

- growth of HEMTs on laterally patterned SiC substrates,
- growth of HEMTs on Ammono GaN [3] bulk semiinsulating substrates with the very low dislocation density,
- Schottky diodes with 700V breakdown voltage on Ammono GaN

Role of substrates and influence of dislocations will be addressed.

Electronic devices based on planar 2DEG structures in nitrides together with vertical current transport structures will continue gradually outperform and probably replace some of the silicon-based transistors and silicon carbide counterparts in near future.

Atomically thin semiconductors light up

Rudolf Bratschitsch

Institute of Physics, University of Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany

Graphene is known as a prototypical two-dimensional material with unique physical properties. However, the difficulty of creating an optical band gap stimulated the search for other monolayer materials. In my talk I will show that atomically thin transition metal dichalcogenides serve as a promising new material class for opto-electronics [1,2] and quantum optics [3].

![Schematic drawing of a MoS$_2$ monolayer](image)

Fig. 1: Schematic drawing of a MoS$_2$ monolayer

The magnitude and spatial distribution of magnetization at the mesoscopic scale (e.g., micromagnetic properties of ferromagnets) are determined by relativistic spin-orbit interaction and crystal symmetry.

In the first part of the lecture I will discuss the role of carrier contribution to the total magnetization in dilute ferromagnetic semiconductors, such as (Ga,Mn)As [1]. In particular, I will compare, within the \(k.p \) model, the time-honored Landau approach to the modern theory of orbital magnetization developed more recently by Resta and co-workers to account for effects of spin-orbit interaction [2]. The key finding here, allowing to describe experimental data [1,3], is the demonstration that the determination of Landau level energies is not needed within the modern approach. Its implementation requires the proper treatment of contributions arising from remote bands.

In the second part of the talk, in-plane uniaxial anisotropy of (Ga,Mn)As will be discussed. This anisotropy was discovered in 1998 and found to be crucial for functionalities of (Ga,Mn)As [4]. By combining \textit{ab initio} approaches with the Luttinger method of invariance with spin-orbit interaction taken into account we demonstrated that this puzzling anisotropy, whose presence contradicts the results of group theory for zinc-blende crystals, stems from a non-random distribution of Mn over cation sites setting in at the surface during the epitaxial growth [5]. Gaining the insight into the physical origin of the uniaxial anisotropy allows us to propose methods of its control, the important step to explore further novel functionalities in (Ga,Mn)As and related systems. At the same time, our model elucidates the origin of a threefold enhancement of the apparent shape magnetic anisotropy found in thin films of (Ga,Mn)As [6].

Using Nuclear Spins To Probe New Electronic States In Low Dimensional Systems

Benjamin A Piot

1 Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS-UJF-INSERMFL, 25, rue des Martyrs, 38042, Grenoble, France

In this talk, I will describe how nuclear spins can be used to probe electronic states in low dimensional systems. The first part will concentrate on the physics of electrons in 2 dimensions in the presence of a normal magnetic field. In this so-called “quantum Hall regime”, a sensitive nuclear magnetic resonance (NMR) technique known as “Resistively-detected-NMR” can be employed to measure the spin polarization of many-body driven electronic states. A first example of such states is the integer quantum Hall state observed when one Landau level is completely filled (filling factor $\nu =1$). In this case, exchange interactions between electrons induce a long range ferromagnetic order, while peculiar spin textures known as “Skyrmions” tend to depolarize the system. The second example I will discuss is the $\nu = 5/2$ fractional quantum Hall state, which has attracted much attention because of its predicted “non-abelian” anyonic quantum statistics, promising a new platform for topological quantum computation. I will focus in particular on the measurement scheme [1] that we have developed to probe the sought-after spin polarization of this state.

From a more general point of view, the (hyperfine) coupling between electrons and nuclei is not only related to the electron spin degree of freedom, but also to the spatial properties of the electronic wave function. For this reason, its strength, sign and symmetry are highly material dependent. I will discuss within this context our efforts to probe, via NMR, the electronic states in the topological insulator Bi$_2$Se$_3$. Our identification of the bulk spin properties [2] constitutes a first step toward NMR-based studies and manipulation of the surface states in these systems.

Topological Matter and Why You Should Be Interested

Steven H. Simon

1 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford United Kingdom OX1 3NP

In two dimensional topological phases of matter, processes depend on gross topology rather than detailed geometry. Thinking in 2+1 dimensions, particle world lines can be interpreted as knots or links, and the amplitude for certain processes becomes a topological invariant of that link. While sounding rather exotic, we believe that such phases of matter not only exist, but have actually been observed (or could be soon observed) in experiments. These phases of matter could provide a uniquely practical route to building a quantum computer. Experimental systems of relevance include Fractional Quantum Hall Effects, Exotic superconductors such as Strontium Ruthenate, Superfluid Helium, Semiconductor-Superconductor-Spin-Orbit systems including Quantum Wires. The physics of these systems, and how they might be used for quantum computation will be discussed.
Spin-photon interface and distant entanglement of quantum dot spins

Aymeric Delteil, Wei-bo Gao, Zhe Sun, Parisa Fallahi, Emre Togan and Ataç Imamoğlu

Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland

Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.

Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.

I will first present the observation of quantum entanglement between a semiconductor quantum dot spin and the color of a propagating optical photon. In a second part, I will demonstrate the transfer of quantum information carried by a photonic qubit to a quantum dot spin using quantum teleportation. Such an interface between dissimilar qubits has attracted considerable interest not only as a versatile quantum-state transfer method but also as a quantum computational primitive.

I will also report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.

Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.
Coherent Precession of an Individual 5/2 Spin

M. Goryca

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warszawa, Poland

Up to now, coherent behavior of an individual spin in a solid have been demonstrated in several two- and three-level systems utilizing i.e. single electron in quantum dot (QD) [1-3] or a nitrogen-vacancy center in diamond [4-5]. Such systems are interesting not only from the scientific point of view, but also from the point of view of future information processing devices and quantum computing. However, more complex multi-level large-spin systems have not been accessible experimentally so far. They have been considered only theoretically, showing i.e. possibility of using them as a multi-qubit systems [6]. This talk summarizes the recent progress in a direct observation of coherent dynamics of an individual Mn$^{2+}$ impurity embedded in a CdTe QD [7], having both electronic and nuclear spin equal to 5/2.

In order to probe the spin state of the single Mn$^{2+}$ impurity we performed a time-resolved measurement of the absorption of a QD containing such an ion. The QD was resonantly excited with two circularly polarized picosecond laser pulses. The energy of the photons was tuned to the transition energy of an exciton-Mn complex with arbitrary chosen spin state of the magnetic ion. The absorption was detected by using the excitation transfer to a neighboring QD and observation of the emission from this dot, similarly to the technique presented previously [8-9]. The delay between the two pulses was precisely controlled so that the second pulse could probe the evolution of the investigated system after the perturbation introduced by the first pulse.

The system under investigation was placed in a magnetic field applied in the Voigt configuration, parallel to the surface of the sample. Under such conditions the spin of the magnetic impurity starts to precess after the pump pulse, which drives it out of the relaxed state. Thus the probability of the absorption of the second pulse (of the same energy as the first one) depends on the delay between the pulses. By measuring this absorption we are able to observe in detail the occupation evolution of different spin states of the system. We also determine the spin dephasing time limited mainly by the crystal field originating from the strain of the QD material. Experimental data are well reproduced with a theoretical model.

[6]. A. Gün et al., Quantum Information Processing 12, 205 (2013).
Lanthanides doped nanocrystals - synthesis, optical properties and biomedical applications

A. Podhorodecki, A. Noculak, M.Banski, B. Sojka, D.Kociolek, J.Misiewicz

Department of Experimental Physics, Wroclaw University of Technology, Wybrane, Wyspianskiego 27, 50-370 Wroclaw, Poland

Introducing to medicine and biology concept of optical markers in tremendous way has changed the recent status of these two important disciplines. This was mainly due to strong development in imaging techniques which recently allow us to investigate both static as well dynamic properties of living cells, their components and their interactions with external factors. One of the alternatives for recently dominating molecular markers are inorganic quantum dots. However, even if they are much better from physico-chemical point of view, from the application point of view the high risk of their toxicity and lack of multimodality makes them still limited in use.

One of the solutions of this problem are nontoxic, inorganic fluoride nanocrystals doped with lanthanide ions. These nanocrystals can be grow as colloidal dots, rhombs, cubes or rods with sizes ranging from 3 up to 100 nm (Fig.1). They can be design as both down-shifting (Fig.1a-e) or up-converting (Fig. 1f-j) emitters being also active in NIR spectral range. In addition, these markers can be used as multimodal markers where one probe can be detected with several imaging techniques (i.e. MR, CT and optical imaging). The main disadvantage of these markers is however their low excitation cross-section making their emission rather low what became a serious problem once coming to clinical use. Thus, to make them a serious candidates for practical use, their emission, relaxation and excitation mechanisms should be understood and optimized.

This paper will present results of our work on synthesis of high quality fluoride nanocrystals doped with lanthanide ions (β- NaGdF₄:Yb, Er and β-NaGdF₄:Eu) both in hydrophobic as well hydrophilic forms containing -OH, -COOH and -NH₂ surface groups. We will discuss in details their excitation, emission and kinetic properties including the ion-ion and ion-ligands interactions. Finally, we will present results of their bio-conjugation and example of their use in optical imaging for melanoma cancer cells detection.

Acknowledgment

The authors would like to thank to National Science Centre for their financial support under the Sonata Bis Project No. UMO-2013/10/E/ST5/00651
Ultrafast electron kinetics in graphene

Andreas Knorr, Torben Winzer, Florian Wendler, Ermin Malic
Technical University Berlin, Department of Theoretical Physics, Nonlinear Optics and Quantum Electronics, Hardenbergstrasse 36, 10623 Berlin, Germany.

Graphene is an ideal structure to study the efficiency of different carrier relaxation channels in a two-dimensional system: Its linear energy dispersion and the vanishing bandgap allow scattering processes, which are suppressed in conventional semiconductors (cp. Fig.1a).

Here, we present self-consistent calculations of the coupled carrier and phonon dynamics based on a second order Born-approximation [1]. This approach allows to track the way of optically excited carriers toward equilibrium - resolved in time-, momentum-, and angle - in theory and corresponding experiments (Helmholtz-Zentrum Dresden-Rossendorf; RWTH Aachen).

After optical pulse excitation, a highly anisotropic non-equilibrium carrier population (cp. Fig. 1b) is created [2]. The efficient intraband carrier-carrier scattering leads to a redistribution of carriers to energetically lower states already within the first 10 fs. Preferably, the scattering occurs along the Dirac cone conserving the anisotropy. In contrast, the phonon-induced relaxation processes bring carriers across the Dirac cone, which leads to an isotropic distribution already after 50 fs (cp. Fig. 1c-d).

The calculations also predict a significant contribution stemming from Auger processes. Inverse Auger recombination leads to a considerable carrier multiplication - in spite of the directly competing phonon-induced processes [3]. After about 100 fs, the carriers are completely thermalized resulting in a spectrally broad Fermi distribution. Unique signatures of Auger processes can be identified in pump-probe experiments on graphene in a magnetic field [4].

In summary, the presented microscopic study provides insight into the ultrafast relaxation dynamics of optically excited carriers in graphene, in particular in anisotropic relaxation and Auger processes.

References

A

Adamiak S. TuP30
Adamowski J. ThP17
Adamas Z. ThP19
Adhikari R. ThP59
Adomavičius R. MoP6
Albrecht M. MoP45
Aleksnapičius J. TuP12
Aleshkevych P. TuP19
Alexander-Webber J.A. MoPLN4
Amano H. MoPLN4
Amilusik M. MoP34
Andreczuk T. TuP3
Andrushchak G. O. MoP17
Andrzejewski J. MoP18, ThP53
Antonov V. MoPLN4
Arora A. MoO8, ThO9
Arslanov R. K. ThP12
Arslanov T. R. ThP12
Aßmann M. WeO4
Avdonin A. MoP41, MoP49
Ayuela A. MoO14

B

Babiński A. MoO10, MoO9, ThP42, ThP48, ThP52
Baczewski L.T. TuO7
Baj M. MoP9, ThP3
Bakhtinov A.P. MoP1
Bala Ł. MoP37
Balderas-Navarro R.E. MoO3
Balram A.C. ThO13
Banski M. ThPLN3
Banyoudeh S. MoP18
Baranowski M. MoO5, TuP59
Bardyszewski W. ThP43
Barnaś T. ThP29
Baroni P. MoP44
Bausenwein M. MoP46
Bayer M. WeO2, WeO4
Beeler M. MoO4
Beleckaitė I. MoP6
Belyaev K.G. ThP38
Bercha S.A. MoP47
Berchenko N. MoP33, TuP30
Bergauer T. TuP39
Bieniek M. ThP37
Biermann K. MoO3
Bihalowicz J.S. TuP60
Binder J. TuP21, TuP46
Blum I. ThO1

Bobko E. ThP22
Bochnowski W. TuP30
Bockowski M. MoP34
Boćkowski M. TuP33
Bogucki A. TuP57
Boguslawski P. MoP43, TuP27
Bojarska A. WeO6
Boledzyuk V.B. MoP1
Boll T. TuP15
Bolotin K. TuPLN-S3
Bonanni A. ThP59
Boryczko K. TuP21
Borysiewicz M.A. MoP3, TuP15, TuP2
Borysiak J. MoO4, MoP54
Boshta M. TuO5
Bożek R. MoP31, MoP54
Bragar I. TuP28
Bratschitsch R. WePLN1
Brodowska B. TuP25
Bruner K. MoP40
Brunner K. TuP44
Brus V.V. MoP8, ThP10, ThP18, TuP17, TuP8
Bryja L. MoO11, MoP28, WeO2
Brzezińska M. ThP27
Buczko R. TuO1
Bugaiova M.E. ThP21
Bugajny P. TuP53
Bugajski M. TuP31
Buller J.V. MoO3
Bulka B.R. ThO2, ThP7
Burger S. ThO10
Butkute R. TuP56
Butté R. MoP12, TuP10
Byczuk K. TuO3

C

Camp M. ThP2
Carlin J. TuP10
Cebulski J. MoP33, TuP30
Čechavičius B. MoP32
Cerda-Mendez E.A. MoO3
Cerqueira M.F. MoP26
Chang L.B. MoP22, TuP1
Chatterji T. ThP12
Cherkez V. ThO9
Chico L. MoO14
Chikoidze E. TuO5
Chusnutdinow S. MoP4, MoP40, ThP39
Chusnutdinow S. MoP26
Ciechan A. TuP27
Ciszewski A. ThP34
Ciuk T. TuP21
Claudon J. MoO1
Cywiński Ł. SuPLN-S2, TuP18, TuP28
Czajkowski G. MoP30
Czernecki R. WeO6
Czyszanowski T. TuP54

D

Dalecki W. TuP40
Dallner M. MoP14, MoPLN3, ThP11
Dąbrowska A.K. MoP31
Dąbrowska G. MoP24
Debus J. ThP44
Dejneka A. MoP27
Delga A. MoO1
Delmonte V. MoO1, MoO8, TuP50
Deltel A. ThPLN1
Dems D. TuP54
Desrat W. SuPLN-S1
Deveaud B. WeO3
Didusko R. TuP40
Dietl T. MoP49, ThP59, TuP18, TuP26, TuP31
Dmitriev A.I. ThP21
Dmytruk I. MoP2
Dmytruk N. MoP2
Dobrovolskas D. TuP12
Dobrowolski W. TuP25
Domagała J.Z. MoO4, TuP48
Domagała J. ThP58
Domagała J.Z. TuP3
Domański T. ThO2
Domukhovski V. TuP25
Dovbeshko G. MoP2
Dragicevic M. TuP39
Dranchuk M. ThP29
Drążkow A. MoP2
Dróżdż P.A. ThP33, TuP37
Duda H. MoP24, ThP5
Dugnau B. TuP29
Dumenci D.O. MoO11
Dumont Y. TuO5
Duran C. TuP10
Dusanowski Ł. ThO8, ThP14, TuP13
Dvořecký S.A. TuP26
Dybko K. MoP40, TuO2, TuP31
Dyksik M. MoP14, MoP29, ThP11
Dziedzic A. TuP30

E

Echtermeyer T.J. MoO11
Édes Z. ThP15
Egorov A.Yu. MoO2
Ekielski M. MoP3
Elbaum D. MoP51
Emirov R.M. ThP12
Eymery J. TuP10

F

Fadeev S. MoP33
Fallahi P. ThPLN1
Fan W.J. TuP54
Farrer I. WeO2
Faucaud G. MoO1
Fedorchenko I.V. ThP12
Fernandez-Rossier J. TuO4
Figielski T. TuP3
Filip R. ThO3
Filipek E. MoP24, ThP25
Fiore A. TuP13
Fischer M. MoPLN3
Florian M. ThP2
Foerster A. ThP2
Foltyn M. ThP59
Fontana Y. ThO1
Fontcuberta i Morral A. SaPLN-S2
Foerster A. ThO8
García-López L. ThO1
Fröhlich D. WeO4
Fronc K. MoP51, TuP11, TuP19

G

Galicka M. TuO1
Gao K. TuP36
Gao W. ThPLN1
Gardias A. MoP51
Gas K. MoP44
Gavalevsky N.M. TuP17
Gavrilenko V. TuP26
Gaworecki K. TuP51
Gawełczyk M. ThP35
Gebski M. TuP54
Geižutis A. TuP56
Gérard J.M. MoO1
Gerhard F. MoP46
Gierałtowska S. MoP10, MoP38, TuP1
Gierotka S. TuP14
Gies C. ThP2
Gladczuk L. MoO12
Glazov M.M. WeO4
Glukhov K.E. MoP47, ThP45
Głuszko G. TuP39
Godlewski M. MoP10, MoP2, MoP27, MoP38,
ThP44, ThP9, TuP1
Golnik A. ThO11, ThO4, ThO5, ThP50, WeO5
Golovatenko A.A. ThP23
Golasa K. MoO10, MoO9, MoP31, ThP4, ThP42, ThP48, TuP49
Golaśewska K. TuP2
Gomaa M.M. TuO5
Gonzalez Szwacki N. MoP57, TuP55
Gorczyca I. MoP45
Gorczyca-Goraj A. MoP11, ThP31
Goryca M. ThO5, ThPLN2, TuP57, WeO5
Goscinński K. TuP42
Gosk J. TuP45
Gosk J.B. TuP14
Gould C. MoP46, TuP44
Górny K. ThP5
Górski M. TuP25
Grabecki G. MoP49, ThP22, TuP18, TuP26, TuP31
Grabowski M. TuP41
Grandjean N. MoP12, TuP10
Grasza K. MoP49
Grochowski J. TuP15
Grodzicki M. ThP34
Gronin S.V. ThP38
Groń T. MoP24, ThP25, ThP5, ThP23
Gryglas-Borysiewicz M. MoP9, ThP3
Grzanka E. MoO4, MoP45, TuP59
Grzanka S. MoO6, MoP50, TuP59
Grzegory I. MoP34
Grzeszczyk M. MoO10, MoO9, ThP42, ThP48
Gumenjuk-Sichevska J.V. ThP1
Gumienny Z. MoP22, TuP1
Gutowska M. TuO2
Guziewicz E. MoP26, MoP48, ThP46, ThP47
Gwozdz K. MoP22, TuP1

H

Hawrylak P. TuP5
Heckötter J. WeO4
Heindel T. ThP2
Heiss M. ThO1
Helm M. MoP42, TuP36
Hernandez-Maldonado D. MoP12, TuP10
Heuser T. ThO10
Hoffling S. ThP11
Hofling S. MoP13, MoP14
Höfling S. MoP21, MoPLN3, ThO8, ThP14, ThP2, TuP13, TuP22
Hopfmann C. ThP2
Hospodkóvá A. MoP23
Hruban A. TuP40
Huang F.S. MoP28
Huang J. MoO14
Huang Y.S. MoO11, MoP28
Hulicius E. MoP23
Humliček J. MoP7

I

Iľynskaya N.D. MoO2
Imamoglu A. ThPLN1
Inglot M. ThP29
Ivanov S.V. ThP38
Ivanov V. ThP21
Ivanov V.Yu. MoP27, ThP44
Iwińska M. MoP37

J

Jacak L. TuP1
Jacak W.A. ThP49
Jadczak J. MoO11, MoP28, WeO2
Jagenteufel P. TuP39
Jahn U. ThP36
Jahnke F. ThP2
Jain J.K. ThO13
Jakiela R. MoP26, MoP48
Jakubczyk T. MoO1, MoO8, TuP50
Jamroz A. MoO13
Janaszek A. TuP50
Janik E. ThP50, TuO7
Janik J.F. TuP14
Janssen T.J.B.M. MoPLN4
Janus-Zygmunt I. MoP11, ThP31
Jarosz D. MoP35, MoP36, MoP48, TuP24, TuP33, TuP60
Jasik A. TuP31
Jaskólski W. MoO14
Jaworowski B. TuP32
Jung W. TuP15
Jurkiewicz-Wegner E. TuP40

K

Kacman P. TuO1
Kaczmarski J. TuP15
Kaganskiy A. ThO10
Kalabukhova E.N. ThP16
Kaminska A. MoO4, MoP25
Kamińska A. MoP36, TuP33
Kamińska E. TuP15, TuP2
Kamińska I. MoP51
Kamp M. MoP14, MoPLN3, ThO8, ThP11, TuP13, TuP35
Kapustianyk V. MoP34
Kapuściński P. MoP28
<table>
<thead>
<tr>
<th>Name</th>
<th>Presentation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loewer A.</td>
<td>MoP13</td>
<td></td>
</tr>
<tr>
<td>Loth S.</td>
<td>TuPLN3</td>
<td></td>
</tr>
<tr>
<td>López-Moreno S.</td>
<td>ThP12</td>
<td></td>
</tr>
<tr>
<td>Luka G.</td>
<td>MoP48</td>
<td></td>
</tr>
<tr>
<td>Łacińska E.M.</td>
<td>ThP32</td>
<td></td>
</tr>
<tr>
<td>Łażewski J.</td>
<td>MoP44</td>
<td></td>
</tr>
<tr>
<td>Łepkowski S.P.</td>
<td>ThP43</td>
<td></td>
</tr>
<tr>
<td>Łusakowski A.</td>
<td>MoP43, ThP40, ThP58</td>
<td></td>
</tr>
<tr>
<td>Machnikowski P.</td>
<td>ThP35, TuP22, TuP51</td>
<td></td>
</tr>
<tr>
<td>Maemoto T.</td>
<td>MoP29</td>
<td></td>
</tr>
<tr>
<td>Maistruk E.V.</td>
<td>MoP16, MoP8, ThP10, ThP20, ThP8, TuP8</td>
<td></td>
</tr>
<tr>
<td>Majewicz M.</td>
<td>MoP49, TuP26, TuP31</td>
<td></td>
</tr>
<tr>
<td>Majewski J.A.</td>
<td>MoO12, MoO13, MoP56, MoP57, MoP58, MoP59, ThP12, ThP55, ThP56, ThP57, TuP41, TuP52, TuP55, WeO7</td>
<td></td>
</tr>
<tr>
<td>Majhofer A.</td>
<td>TuP45</td>
<td></td>
</tr>
<tr>
<td>Makarovskiy O.</td>
<td>ThP6</td>
<td></td>
</tr>
<tr>
<td>Makarowa I.</td>
<td>WeO6</td>
<td></td>
</tr>
<tr>
<td>Maksimov V.I.</td>
<td>ThP9</td>
<td></td>
</tr>
<tr>
<td>Malic E.</td>
<td>ThPLN4</td>
<td></td>
</tr>
<tr>
<td>Mallet P.</td>
<td>ThO9</td>
<td></td>
</tr>
<tr>
<td>Mancini L.</td>
<td>MoP12, ThO1, TuP10</td>
<td></td>
</tr>
<tr>
<td>Marchwiany M.</td>
<td>MoP58, ThP55, TuP45</td>
<td></td>
</tr>
<tr>
<td>Marcinkowski L.</td>
<td>MoP19</td>
<td></td>
</tr>
<tr>
<td>Marcus J.</td>
<td>ThO9</td>
<td></td>
</tr>
<tr>
<td>Marczewski J.</td>
<td>TuP39</td>
<td></td>
</tr>
<tr>
<td>Marianchuk P.D.</td>
<td>MoP17</td>
<td></td>
</tr>
<tr>
<td>Marona L.</td>
<td>MoO5</td>
<td></td>
</tr>
<tr>
<td>Maryanchuk P.D.</td>
<td>MoP16, MoP8, ThP10, ThP18, ThP20, ThP26, TuP17, TuP8</td>
<td></td>
</tr>
<tr>
<td>Maryński A.</td>
<td>MoP13, MoP20, MoP21, TuP13</td>
<td></td>
</tr>
<tr>
<td>Maśka M.M.</td>
<td>MoP11, ThP31</td>
<td></td>
</tr>
<tr>
<td>Materna A.</td>
<td>TuP40</td>
<td></td>
</tr>
<tr>
<td>Mathieu R.</td>
<td>TuP48</td>
<td></td>
</tr>
<tr>
<td>Matuszewski M.</td>
<td>WeO3</td>
<td></td>
</tr>
<tr>
<td>Maude D.K.</td>
<td>MoPLN4, SuPLN-S1</td>
<td></td>
</tr>
<tr>
<td>Melezhik E.O.</td>
<td>ThP1</td>
<td></td>
</tr>
<tr>
<td>Mermillod Q.</td>
<td>MoO1</td>
<td></td>
</tr>
<tr>
<td>Michalska M.</td>
<td>ThP33</td>
<td></td>
</tr>
<tr>
<td>Michalek G.</td>
<td>ThO2</td>
<td></td>
</tr>
<tr>
<td>Mięlnik-Pyszczorski A.</td>
<td>TuP51</td>
<td></td>
</tr>
<tr>
<td>Mikhailov N.N.</td>
<td>TuP26</td>
<td></td>
</tr>
<tr>
<td>Mikulski J.</td>
<td>TuP11, TuP19</td>
<td></td>
</tr>
<tr>
<td>Minikayev R.</td>
<td>MoP44, ThP58, TuP24</td>
<td></td>
</tr>
<tr>
<td>Mirek R.</td>
<td>ThP52, WeO1, WeO3</td>
<td></td>
</tr>
<tr>
<td>Misiewicz J.</td>
<td>MoP13, MoP14, MoP18, MoP20, MoP21, MoP29, ThO8, ThP11, ThP14, ThPLN3, TuP13, TuP20, TuP22</td>
<td></td>
</tr>
<tr>
<td>Mitioglu A.</td>
<td>TuO6</td>
<td></td>
</tr>
<tr>
<td>MŁeymann A.H.</td>
<td>ThP2</td>
<td></td>
</tr>
<tr>
<td>Molas M.R.</td>
<td>MoP53</td>
<td></td>
</tr>
<tr>
<td>Molenkamp L.W.</td>
<td>MoP40, MoP46, TuP44</td>
<td></td>
</tr>
<tr>
<td>Mollaev A.Yu.</td>
<td>ThP12</td>
<td></td>
</tr>
<tr>
<td>Monroy E.</td>
<td>MoO4</td>
<td></td>
</tr>
<tr>
<td>Morier-Genoud F.</td>
<td>WeO3</td>
<td></td>
</tr>
<tr>
<td>Mostovyi A.I.</td>
<td>ThP18</td>
<td></td>
</tr>
<tr>
<td>Motyka M.</td>
<td>MoP14, MoP29, ThP11</td>
<td></td>
</tr>
<tr>
<td>Mręńca A.</td>
<td>TuP6</td>
<td></td>
</tr>
<tr>
<td>Mrowiński P.</td>
<td>MoP21, TuP22</td>
<td></td>
</tr>
<tr>
<td>Murray R.</td>
<td>MoP20</td>
<td></td>
</tr>
<tr>
<td>Musia A.</td>
<td>MoP21, ThO10, ThP2</td>
<td></td>
</tr>
<tr>
<td>Muzioł G.</td>
<td>TuP59</td>
<td></td>
</tr>
<tr>
<td>Mycielski A.</td>
<td>ThP22, TuP27</td>
<td></td>
</tr>
<tr>
<td>Myśliwiec M.</td>
<td>MoP3</td>
<td></td>
</tr>
<tr>
<td>Nähle L.</td>
<td>MoPLN3</td>
<td></td>
</tr>
<tr>
<td>Nasilowska K.</td>
<td>ThP36</td>
<td></td>
</tr>
<tr>
<td>Nawrocki M.</td>
<td>ThO7, ThP50, TuO5, WeO1, WeO5</td>
<td></td>
</tr>
<tr>
<td>Nedzinskas R.</td>
<td>MoP32</td>
<td></td>
</tr>
<tr>
<td>Nevinskas I.</td>
<td>TuP56</td>
<td></td>
</tr>
<tr>
<td>Ni P.N.</td>
<td>TuP58</td>
<td></td>
</tr>
<tr>
<td>Nicholas R.J.</td>
<td>MoPLN4</td>
<td></td>
</tr>
<tr>
<td>Nocoll C.A.</td>
<td>WeO2</td>
<td></td>
</tr>
<tr>
<td>Niegowski A.</td>
<td>ThP55</td>
<td></td>
</tr>
<tr>
<td>Nishisaka K.</td>
<td>MoP29</td>
<td></td>
</tr>
<tr>
<td>Nocula A.</td>
<td>ThPLN3</td>
<td></td>
</tr>
<tr>
<td>Nogajewski K.</td>
<td>MoO10, MoO8, MoO9, ThO9, ThP52</td>
<td></td>
</tr>
<tr>
<td>Novotný T.</td>
<td>ThO3</td>
<td></td>
</tr>
<tr>
<td>Nowak M.P.</td>
<td>ThP54, TuP7</td>
<td></td>
</tr>
<tr>
<td>Nowicki P.</td>
<td>ThP22, TuP26</td>
<td></td>
</tr>
<tr>
<td>O'Shea J.</td>
<td>ThP6</td>
<td></td>
</tr>
<tr>
<td>Oksuz K.E.</td>
<td>ThP60</td>
<td></td>
</tr>
<tr>
<td>Olszewski J.</td>
<td>TuP22</td>
<td></td>
</tr>
<tr>
<td>Oneksiak P.</td>
<td>TuP46</td>
<td></td>
</tr>
<tr>
<td>Oreszczuk K.</td>
<td>TuP57</td>
<td></td>
</tr>
<tr>
<td>Orletsky L.G.</td>
<td>MoP8, ThP10, TuP8</td>
<td></td>
</tr>
<tr>
<td>Orłowski B.A.</td>
<td>ThP46, TuP42</td>
<td></td>
</tr>
<tr>
<td>Orłowski W.</td>
<td>TuP40</td>
<td></td>
</tr>
<tr>
<td>Osika E.N.</td>
<td>TuP9</td>
<td></td>
</tr>
<tr>
<td>Oswald J.</td>
<td>MoP23</td>
<td></td>
</tr>
<tr>
<td>Ovsiannikova L.I.</td>
<td>MoP15</td>
<td></td>
</tr>
<tr>
<td>Owczarczyk L.</td>
<td>ThP44</td>
<td></td>
</tr>
<tr>
<td>Ozfidan I.</td>
<td>TuP5</td>
<td></td>
</tr>
</tbody>
</table>
P

Pacuski W. MoP54, ThO11, ThO4, ThO5, ThO7, ThP50, TuO5, TuP50, TuP57, WeO1, WeO5
Pakula K. MoP31
Palutkiewicz T. ThP30
Palosz B. ThP14
Panasyuk M. MoP34
Pangrác J. MoP23
Papaj M. ThO4, TuP18
Papierska J. MoP54, TuO5, TuP19
Papis-Polakowska E. TuP31
Paradowska K. MoP5
Parkomenko H.P. MoP16
Parlińska-Wojtan M. ThO11
Pasek W.J. ThP54
Pawlus S. ThP25
Pągowska K.D. TuP2
Peinke E. MoO1
Piecza M. MoO14
Piekarska A. MoP39
Pieczarka M. MoP13, MoP20, ThO8
Pieniat K. MoO6
Pieniazek A. TuP42
Pieniążek A. MoP38, ThP36
Piersa M. TuP40
Pietruszka R. MoP10, MoP2, TuP1
Pietrzyk M.A. MoP35, MoP5, TuP24
Piętka B. ThP52, TuP47, WeO1, WeO3, WeO5
Pilat M. MoO10, MoO9, ThP42
Piot B.A. SuPLN-S1, WePLN3
Piotrowska A. ThP59
Piotrowski J. TuP5
Piz M. ThP25
Placzek-Popko E. MoP22, MoP5, TuP1
Plochocka P. SuPLN-S1
Plachta J. TuP43
Plocharski A. TuP49
Plochocka P. TuO6
Podemski P. MoP13, MoP20
Podgórni A. TuP25
Podhorodecki A. ThPLN3
Podolska N. TuP4
Pohl C. TuP44
Polaczyński J. MoP40
Poletaev N.K. MoO2
Popielska M. MoP58, ThP55, TuP52
Popovych V. MoP2

Porowski S. MoP34
Potasz P. MoO39, MoP52, ThP27, ThP37, TuO4, TuP32, TuP34, TuP53
Potemski M. MoO10, MoO8, MoO9, MoP53, ThO9, ThP52, WeO2
Pozingyte E. MoP32
Prucna S. TuP36
Prucnal S. TuP13
Prystawko P. TuPLN4
Przedziecka E. MoP26, MoP35, MoP48
Przybylińska H. TuP27
Przybytek J. MoP9, ThP3
Ptaszyński K. ThP7
Pustovoy O.V. ThP20
Pyszniak K. ThP13

R

Radchenko M.V. ThP21
Rakhlin M.V. ThP38
Ratajczak R. MoP48, ThP47
Rawski M. MoP4
Reithmaier J.P. MoP18, MoP21, ThP14, TuP22
Reitzenstein S. MoP13, ThO10, ThP2, TuP35
Részka A. MoP38, MoP50, MoP53, MoP6, ThP36, ThP46, TuP25
Rigal L.B. SuPLN-S1
Rigutti L. MoP12, SaPLN-S3, ThO1, TuP10
Rimkus A. MoP32
Ritchie D.A. WeO2
Rodak D. ThP43
Rodina A.V. ThP23
Rodd T. ThO10
Rokhinson L. ThP19
Romanyuk V. MoP2
Rozsak K. ThO3
Rousset J-G. ThP50
Rousset J.-G. WeO5
Rousset J.G. ThO11, TuP50, WeO1
Rudniewski R. ThP50, TuP43, TuP50
Rudno-Rudzinski W. MoP18
Rudyk V. MoP34
Russso-Averchi E. ThO1
Rybusiński J. MoP51
Ryczko K. ThP11, TuP20, WeO2

S

Sadak M. MoP59, TuP45
Sadovyi B. MoP34
Sadowski J. MoP6, MoP9, ThP41, TuP3, TuP48
Safaei S. TuO1
Sajkowski J.M. MoP35
Sakowski K. MoO4, MoO7, MoP19, MoP25
Salewski M. ThP44
Santos P.V. MoO3
Sarakovskis A. MoP35
Sarzyński M. MoP50, TuP37
Sasa S. MoP29
Savchenko D.V. ThP16
Sawicki B. MoP24, ThP5, TuP23
Sawicki K. ThO7
Sawicki M. MoP42, ThP3, ThP41, ThP59, TuP44
Scharoch P. TuP34
Scheel S. WeO4
Scheuermann J. MoPLN3
Schiavon D. MoO5
Schifano R. MoP26
Schmidt R. ThO12
Schreyeck S. MoP40
Schulz T. MoP45
Schumacher C. MoP40
Sedova I.V. ThP38
Seisyan R.P. MoO2
Sen S. ThP60
Sen U. ThP60
Sęk G. MoP13, MoP14, MoP18, MoP20, MoP21, MoP29, ThO8, ThP11, ThP14, TuP13, TuP20, TuP22, WeO4
Shtepliuk I. MoP15
Shubina T.V. ThP23
Shylko E. MoP56
Sichkovskyi V.I. MoP18
Siekacz M. MoP45, TuP59
Siklitckaia A. ThP56
Šikola T. ThO6, ThP15
Sikora M. MoP51, TuP19
Simon S.H. WePLN4
Sitarek P. MoO11
Śliwa C. WePLN2
Śliwa A. TuP41
Siusys A. TuP48
Sizov F.F. ThP1
Skierbiszewski C. MoP45, TuP59
Skierkowski A. WeO7
Skorupa W. ThP13, TuP36
Skrzynska K. MoP22
Skupiński P. MoP49, TuP27
Slynko V.E. MoP1
Slynko E.I. TuP25
Slynko V.E. TuP25
Słupiński T. MoP54, TuP47
Smoleński T. ThO4, ThO5, TuO7, TuP57
Snigurenko D. MoP26, MoP48, ThP47
Sobanska M. MoP53, ThP36
Sobańska M. ThP32
Sojka B. ThPLN3
Solovann M.M. ThP18, ThP26, TuP17
Somers A. MoP21, ThP14, TuP22
Sorokin S.V. ThP38
Spencer P.D. MoP20
Spisak B.J. ThP17, ThP30
Stachowicz M. MoP26, MoP35, ThP47, TuP24
Staszczak G. MoO5, MoO6, MoP34, MoP45
Stawicki P. TuP47
Stępień P. MoP51
Stępnicki P. WeO3
Stępniewski R. MoP31, MoP37, TuP21, TuP46
Stiller K. TuP15
Stolz H. WeO4
Stonert A. MoP48, ThP47
Story T. MoP33, MoP40, MoP43, ThP21, ThP41, ThP58, TuO2
Strak P. MoO4, MoO7, MoP25, TuP28
Strąk P. MoP19
Strupiński W. ThP48, TuP21, TuP46
Strzelecka S.G. TuP40
Sutula S. MoO5, MoO6, MoP45, MoP50, TuP37, WeO6
Suchocki A. MoP36, TuP27
Sulich A. ThP19
Sun Z. ThPLN1
Sunko E.I. ThP50, TuO5, TuO7, TuP19, TuP26, WeO5
Sutulowa S. MoP50, TuP37
Szczepinski W. MoP47, ThP45, TuP45, WeO1, WeO3
Szelewski M. MoP51
Szweczyk M. MoP51
Szajn M. MoP47, ThP45, TuP41, TuP52
Szőt M. MoP40, ThP39, TuO2, TuP3
Szewczyk M. ThP45
Szewczyk A. TuO2
Szewczyk A. TuP42
Szewczyk M. MoP50, TuP37
Szajn M. MoP47, ThP45, TuP41, TuP52
Szőt M. MoP40, ThP39, TuO2, TuP3
Szczepkiel D. ThP59
Szulakowska L.M. MoP52
Szumanska A. ThP57
Szuszkiewicz W. MoP44, ThP40
Szyller Ł. TuP26
Szymura M. TuO6, TuO7
Ścieciek M. ThO11
Śliwa C. WePLN2
Śnieżek D. ThP22
Świderski M.Ś. ThP51
T
Taborska M. MoP2
Tamulaitis G. TuP12
Tarakina N.V. TuP44
Targowski G. MoO6, MoP50
Tarkowski T. MoP57
Tarnowski K. TuP22
Taube A. TuP15
Tchutchulashvili G. ThP36
Teisseyre H. MoP36, TuP33, TuP60
Teppe F. TuP26
Thewes J. WeO4
Togan E. ThPLN1
Tokarczyk M. TuO5, TuP47
Toke C. ThO13
Tomaszewicz E. ThP5, TuP23
Tomaszewski D. TuP39
Tong J.C. TuP58
Toropov A.A. ThP38
Trabel M. TuP44
Treberspurg W. TuP39
Trzyna M. MoP33, TuP30
Tsybylskii V. MoP34
Turos A. ThP47
Turski H. TuP59
Twardowski A. MoP51, TuP14, TuP45
Tzalenchuk A. MoPLN4

U
Ubych K. ThP48
Urbaniak M. ThO2
Urbanowicz P. TuP23
Urbaničzyk W. TuP22
Usikova A.A. ThP38

V
Valušis G. MoP32
Veuillen J.-Y. ThO9
Vurpillot F. MoP12, ThO1, TuP10
Vyskočil J. MoP23

W
Wach E. TuP38
Wachnicki L. MoP10, MoP38, TuP1
Wang Q.J. TuP54
Wang X.Q. MoP45
Warchulski A. ThP57
Wasik D. MoP9, ThP3, ThP4, TuP37
Wawrzyńczak R. MoP49, TuP31
Weih R. MoP14, MoPLN3, ThP11
Weisbuch C. MoPLN2
Wendler F. ThPLN4
Wiater M. ThP19, ThP39, TuO7, TuP11
Wiatr M. ThP44
Wichrowska K. MoP4
Winiarski M.J. TuP34
Winzer T. ThPLN4
Wiśniewski P. WeO6
Witkowski B.S. MoP10, MoP38, TuP1
Witowski A. MoP40
Włazło M. ThO12
Wohlfel B. ThO10
Woińska M. TuP45
Wojciechowski T. MoP40, ThP22, ThP41, TuO7, TuP48
Wojnar P. TuO6, TuO7, TuP43
Wojnar 1 P. TuP11
Wojtowicz T. MoP40, ThP19, ThP22, ThP39,
TuO6, TuO7, TuP43
Wolny P. TuP59
Wołoszyn M. ThP17, ThP30
Wołoś A. TuP40
Wosiński T. MoP4, TuP3
Woźniak T. TuP34
Wójcik P. ThP17
Wójcik A. MoO11, MoP28, MoP39, MoP52,
ThO13, ThP27, ThP37, TuP32, TuP34, TuP53,
WeO2
Wróbel J. ThP22, TuP18, TuP26, TuP31
Wu Y. ThP6
Wysmolek A. MoP31, MoP37, MoP53, ThP32,
ThP48, TuP21, TuP46
Wysokiński K.I. ThO2
Wzorek M. MoP3, TuP2

X
Xie Y.Y. TuP54
Xu Z.J. TuP54
Xue Q. TuPLN1

Y
Yager T. MoPLN4
Yahniuk I. MoP49
Yakimova R. MoPLN4
Yakovlev D.R. SaPLN-S1, WeO2
YararTauscher E. ThO10
Yastrubchak O. MoP4
Yuan Y. MoP42

Z
Zaitsev D.A. MoO2
Zajarniuk T. TuO2
Zając M. MoP37
Zakrzewski A.J. TuP29
Zaleszczyk W. ThP39, TuO7, TuP43
Zduński D. TuO3
Zeimer U. ThP36
Zhang D.H. TuP54, TuP58
Zholudev M. TuP26
Zhou S. MoP42, TuP36
Zielińska-Racyńska S. MoP30
Zieliński M. TuO7
Zieliński M.Z. ThP51
Zielony E. TuP1
Ziemkiewicz D. MoP30
Zíková M. MoP23
Ziółkowska D. MoP31
Ziółkowska D.A. ThP33
Zipper E. MoP11, ThP31
Zytkiewicz Z.R. MoP53, ThP32, ThP36

Ż
Żebrowski D.P. MoP55
Żuk J. ThP13
Telephone contact to the Conference Office (in Wisła) during the Conference ONLY:

Conference Office:
mobile: +48 726 744 696 (Martyna Cinak-Modzelewksa)
mobile: +48 502 962 261 (Maciej Zajaczkowski)

This phone will be active from:
 Friday, June 19th, 8:00 a.m.
 to
 Friday, June 26th, 8:00 p.m.
Participants can use this phones in any case they need assistance from Conference Organizers, e.g. during travel, during turist trips, having severe problems or having questions.
Please use it as your conference emergency call.

Hotel Stok reception:
+48 33 856 41 00
+48 33 856 41 66
mobile: +48 604 621 528
Notes
Notes
Firma PREVAC od 1996 roku jest wiodącym na świecie producentem aparatury naukowo-badawczej wykorzystywanej do badań w warunkach wysokiej i ultra wysokiej próżni. Produkty firmy, opracowane, skonstruowane i wyprodukowane od początku do końca w Polsce, pracują obecnie na terenie uniwersytetów, instytutów naukowych i jednostek badawczo-rozwojowych na całym świecie.
DARMOWY UPGRADE
wielu najpopularniejszych modeli oscyloskopów

Tektronix

W celu uzyskania szczegółowych informacji skontaktuj się z naszym przedstawicielem

Tespol Sp. z o.o.

Siedziba Firmy: 54-413 Wrocław, ul. Kiecińska 125, tel. 71 783 63 60, tel. 22 675 75 42
Biura Handlowe: 02-672 Warszawa, ul. Domaniewska 37, 81-451 Gdynia, Aleja Zwycięstwa 96/98
tespol@tespol.com.pl • www.tespol.com.pl