InAs P-N Junction as a Surface Terahertz Emitter

I. Nevinskas, R. Butkutė, A. Geižutis, A. Krotkus

Center for Physical Science and Technology, A. Goštauto g. 11, Vilnius, Lithuania

Surface THz emitters have practical advantages over Photoconductive antennas (PCAs) such as no need for external electric field and the ability to generate THz in a wider activation wavelength range. However, they still require high optical powers and are not feasible for industry.

It has been known for long that the bulk p-InAs is the best surface THz emitter. This is due to the fact that surface defects (density of $\sim 10^{12}$ cm$^{-2}$) create a static electric charge also known as the surface accumulation layer [1]. This surface accumulation layer, similarly to a P-N junction, induces a depletion region forming a built-in surface electric field [2], which, in turn, allows to strongly polarize the lattice explained by the EFOIR effect. Following this principle, an actual InAs P-N junction has been MBE grown (Fig. 1) and compared to bulk p-InAs. Favorably, the InAs P-N junction seems to be promising (Fig. 2).

Further investigations aim to add external electric field to increase the P-N depletion width and treat this structure as a diode-like THz emitter. Also, the cheap and compact telecommunication lasers operating at 1.55μm forces to make a structure which would be most suitable for this wavelength range.
