Photo-ESR and spin-echo photo-ESR investigations of ZnO:Co

V.Yu. Ivanov¹, A.Dejneka² and M. Godlewski¹³

¹Inst. of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
²Institute of Physics, Czech Republic Academy of Sciences, Na Slovance 1999/2 182 21 Praha
³Dept. of Mathematics and Natural Sciences College of Science, Cardinal S. Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland

Semiconducting materials showing a room temperature ferromagnetic (RT FM) response are required for spintronics applications. This fact explains a concentrated research of ZnCoO, for which carriers mediated RT FM was theoretically predicted. To realize this Co should stay in 2+ charge state (expected when Co substitutes zinc in ZnO) in heavily doped samples. Recharging to 1+ or 3+ should be excluded for electrons or holes mediated FM. This explains motivation of the present work.

For ZnCoO alloys a strong absorption band appears with onset at about 2.4 – 2.6 eV. Origin of this absorption in ZnCoO was discussed in several works. The broad absorption band was related either to Co charge transfer transitions (Co photo-ionization) or to excitation of surface plasmons resonances in nanometer size metallic Co inclusions. The first interpretation is in line with the results of photo-conductivity measurements. It was proposed that the broad absorption band is the result of competition of two photo-ionization processes – Co 2+ to 3+ (at a lower energy) and 2+ to 1+ (close to the band-to-band transition), the latter overlapping with a process of photo-generation of Co localized excitons.

The origin of the absorption band is cleared out in the present work, based on the results of electron spin resonance (ESR), spin-echo ESR and photo-ESR investigations. ESR investigations were performed for bulk samples with a relatively low Co concentration – less than 10¹⁷ cm⁻³. Only in this case we could detect a photo-sensitive ESR signal of Co²⁺ ions. Conventional photo-ESR experiment is supported by the results of pulsed ESR (spin-echo) study. Photo-sensitivity of spin echo Co²⁺ ESR signal is studied. In parallel to photosensitivity of Co²⁺ ESR signal light sensitivity of ESR signal of shallow donors was also examined. This allowed to determine which carriers are photo-generated upon Co photo-ionization.

This work was partly supported by grant “Maestro” (2012/06/A/ST7/00398) of the National Centre for Research.