Electronic and transport properties of topological insulators

M. Bieniek, P. Potasz, and A. Wójs

Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland

We study the electronic and transport properties of various topological insulators. Topological insulators (TI) [1] are new materials, which posses many properties interesting for both applied and fundamental physics. In the following work, we analyze the Su-Schrieffer-Heeger model for polyacetylene [2], which can be understood as a 1D TI, graphene nanoribbons with spin-orbit interaction [3], and CdTe/HgTe quantum wells [4]. For infinitely long nanoribbons we present band structures and their modification due to external potentials. In case of a finite systems, the conductance and eigenenergy spectra are presented within tight-binding approach. We investigate the effect of various types of disorders and external potentials. The effect of electron-electron interaction in graphene systems will be considered.

J. E. Moore, Nature 464, 194 (2010); M. Z. Hasan and C. L. Kane, Rev. Mod. Phys.
82, 3045 (2010); X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[2] W. P. Su, J. R. Schrieffer, and A. J. Heeger, *Phys. Rev. Lett.* 42, 1698 (1979).

[3] C. L. Kane and E. J. Mele, *Phys. Rev. Lett.* **95**, 226801 (2005).

[4] B. A. Bernevig and T. L. Hughes and S.-C. Zhang, Science 314, 1757 (2006).