Electrical properties of AgY_{1-x}Nd_x(WO₄)₂ solid solutions

B. Sawicki¹, E. Tomaszewicz², T. Groń¹, H. Duda¹, Z. Kukuła¹ and J. Goraus¹

¹University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice, Poland ²West Pomeranian University of Technology, Szczecin, Department of Inorganic and Analytical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland

Molybdates and tungstates doped with rare-earth ions (RE^{3+}) are an important group of inorganic materials that have great potential application in various fields. They are extensively studies and more often applied in such luminescent devices as diode-pumped solid-state lasers, phosphor-converted white light-emitting diodes, optical fibres, and integrated optics [1-3]. Silver and rare-earth metal tungstates, $AgRE(WO_4)_2$ (RE = Y, Ce-Lu), show polymorphism and they crystallize in two polymorphs with the monoclinic and the tetragonal symmetries [4]. The structure of low-temperature, monoclinic phases (S.G. *C2/m*) can be represented by (W_4O_{18})⁸⁻ polyanions, and REO₈ as well as AgO₈ polyhedra. Two neighbouring REO₈ polyhedra are connected by sharing edges along the *b* axis, forming isolated RE₂O₁₄ units [4]. Low-temperature modifications of AgY_{1-x}Nd_x(WO₄)₂ solid solutions (*x* = 0.005-0.20) have been successfully prepared by an annealing of stoichiometric mixtures of following tungstates: Ag₂WO₄, Nd₂(WO₄)₃, and Y₂(WO₄)₃. The mixtures of three tungstates were sintered in air at temperatures ranging from 873 K to 1073 K. The sintered ceramics were examined by XRD and SEM methods.

The electrical resistivity $\rho(T)$ of AgY_{1-x}Nd_x(WO₄)₂ has been measured in the 76-400 K temperature range with the aid of the four-probe DC method using a KEITHLEY 6517B Electrometer/High Resistance Meter. The thermoelectric power S(T) was measured in the 300-600 K temperature range with the aid of a Seebeck Effect Measurement System (MMR Technologies, Inc., USA). The $\rho(T)$ and S(T) measurements showed the insulating properties and *n*-type conduction. At high temperatures, *i.e.* above 400 K, we find a rather well defined linear slope of S(T) = aT (diffusion thermopower) which extrapolates to (0, 0) [5]. The diffusion thermopower for an electron gas is due to carrier diffusion and it contains information about the Fermi edge [6]. The smaller value of the diffusion coefficient a is observed when Nd^{3+} content in AgY_{1-x}Nd_x(WO₄)₂ is larger. For the same samples, a reversal of thermoelectric power sign is also being observed. The residual electrical conduction of the type n or p in the solid solutions under study seem to be connected with the anionic or cationic vacancies, respectively, the same as it was observed in the CdRE₂W₂O₁₀ compounds [7]. The changes of sign observed in S(T) can be an effect of the different values of the activation energy of the vacancy acceptor and donor levels as well as a transfer of the phonon momentum to the electron gas.

One of us (J.G.) thanks the National Science Center (NCN) for financial support, on the basis of Decision No. DEC-2012/07/B/ST3/03027.

- [1] G. Boulon, Opt. Mater. 34, 499 (2012).
- [2] G. Métrat, N. Muhlstein, A. Brenier, and G. Boulon, Opt. Mater. 8, 75 (1997).
- [3] A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, A. A. Orlovich, A. A. Demidovich, K. Yumashev, N. V. Kuleshov, H. J. Eichler, and M. B. Danailov, *Opt. Mater.* **16**, 349 (2001).
- [4] P. V. Klevtsov, and R. F. Klevtsova, J. Strukt. Chem. 18, 339 (1977).
- [5] T. Groń, K. Bärner, Ch. Kleeberg, and I. Okońska-Kozłowska, Physica B 225, 191 (1996).
- [6] R. D. Barnard, Thermoelectricity in Metals and Alloys, Taylor & Francis, London, 1972.
- [7] Z. Kukuła, E. Tomaszewicz, S. Mazur, T. Groń, S. Pawlus, H. Duda, and T. Mydlarz, J. Phys. Chem. Solids 74, 86 (2013).