Electrical Characterization of ZnO-based Junctions Prepared by the Atomic Layer Deposition Method – Possible Ways to Improve the Device Rectifying Properties

Tomasz A. Krajewski¹, Ramón Schifano¹, Dmytro Snigurenko¹, Elżbieta Guziewicz¹, Krzysztof Kopalko¹, Marek Godlewski^{1, 2}, Krzysztof Gościński¹

¹Institute of Physics, Polish Acad. of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland ²Dept. of Mathematics and Natural Sciences College of Science Cardinal S. Wyszyński University, ul. Dewajtis 5, 01-815 Warsaw, Poland

ZnO is a promising material for a wide variety of device applications ranging from optoelectronic to piezoelectric and spintronic devices. One of the growth methods that gathers a rapidly increasing interest in this field is the Atomic Layer Deposition (ALD). Nowadays the ALD-ZnO films are tested as a promising candidate for transparent conductive electrodes in solar cells, parts of thin film transistors as well as selecting elements in the 3D memories based on a cross-bar architecture. For some of these devices a good quality rectifying junction is an essential element. In order to construct a ZnO-based diode with desired I-V characteristics the zinc oxide layer should reveal both low carrier concentration (responsible for the low reverse current) and their high mobility (for a high driving current of the junction). These two features can be achieved by proper adjustment of the ZnO growth conditions [1].

As we have already demonstrated, the ALD-ZnO films 100 nm to 400 nm thick deposited between 100 °C and 200 °C show tunable electrical properties ($n \sim 10^{16} - 10^{20}$ cm⁻³) [2]. However, the epitaxial ALD-ZnO layers (thicker than 500 nm) obtained at higher growth temperature (240 °C - 300 °C) exhibit electron concentration at the level of $10^{17} - 10^{18}$ cm⁻³, which is too high for advanced capacitance spectroscopy-related studies (e.g. DLTS).

In the present work we demonstrate rectifying structures based on the epitaxial ALD-ZnO films and discuss several ways to improve their electrical properties. In particular the effect of Rapid Thermal Annealing (RTA) in the oxygen and nitrogen atmospheres between 300 °C and 500 °C performed on the ZnO samples deposited on Si is shown. This results in a drop of the electron concentration down to $10^{16} - 10^{17}$ cm⁻³. Interestingly, the Atomic Force Microscopy (AFM) analysis performed prior to and after the annealing steps shows no substantial variation in the RMS roughness as a consequence of the annealing. The layers were subsequently dipped in the 30% solution of H₂O₂ before the Schottky contact (Ag) deposition. The examined ZnO-based structures revealed a rectification ratio of 10^4-10^5 and an ideality factor η about 2.8 at \pm 2V, suggesting their suitability for electrical measurements based on capacitance spectroscopy.

The research was partially supported by the European Union within European Regional Development Fund, through the Innovative Economy grant POIG.01.01.02-00-008/08. The authors $T \land K = D S$ K K and K G acknowledge support by the grant number

The authors T.A.K., D.S., K.K. and K.G. acknowledge support by the grant number DEC-2013/09/D/ST5/03879 of the National Science Centre of Poland (NCN). The author R.S. was supported by the EU 7th Framework Programme under the CAPACITIES project REGPOT-CT-2013-316014 (EAgLE).

[1] E. Guziewicz, M. Godlewski, T. Krajewski et al., *J. Appl. Phys.* 105, 122413 (2009).
[2] E. Guziewicz, M. Godlewski, Ł. Wachnicki et al., *Semicond. Sci. Technol.* 27, 074011 (2012).