Optical and Electrical Properties of Cu₂ZnSnSe₄ and Cu₂ZnSnS₂Se₂ Thin Films

Ivan P. Koziarskyi, Edward V. Maistruk, Dmytro P. Koziarskyi and Pavlo D. Marianchuk

Yuriy Fedkovych Chernivtsi National University, Kotsubinsky Str., 2, 58012, Chernivtsi, Ukraine

Thin films of $Cu_2ZnSnSe_4$ and $Cu_2ZnSnS_2Se_2$ were obtained by thermal evaporation of previously synthesized materials and determined their optical coefficients.

Measurement of optical coefficients were performed on Nicolet 6700 spectrometer in the wavelength range $\lambda = 0.9 - 26.6$ microns and spectrometer C Φ -2000 in the range of wavelengths $\lambda = 0.4 - 1.1$ microns. The optical properties of thin films Cu₂ZnSnSe₄ and Cu₂ZnSnS₂Se₂ (their refractive index $n(\lambda)$, absorption coefficient $\alpha(\lambda)$, and extinction coefficient $k(\lambda)$) can be assessed by independent reflectance and transmittance measurements (fig. 1).

Fig. 1. Dependency of transmission coefficient on wavelength of electromagnetic radiation at T = 300 K for thin film Cu₂ZnSnS₂Se₂

By extrapolating the linear portion of the plot of $\alpha^2 = f(hv)$ against hv to zero absorption coefficient the optical band gap of the thin films was determined to be $E_g \approx 1.39$ eV for Cu₂ZnSnSe₄ and $E_g \approx 1.38$ eV for Cu₂ZnSnS₂Se₂.

The sheet resistance R_s of a thin film Cu₂ZnSnSe₄ and Cu₂ZnSnS₂Se₂ (whose thickness is much smaller than a typical contact separation) is the resistance of a square sheet of the film, specified in unit of "ohms per square". The sheet resistance of a sample in the form of a rectangle depends not on its linear dimensions but on its length-to-width ratio L/W: $R_s = RW/L$, where R is the measured resistance.

The calculated room-temperature R_s value is 98.5 k Ω /square for Cu₂ZnSnSe₄ and 21.2 k Ω /square for Cu₂ZnSnS₂Se₂. Since the film thickness is for Cu₂ZnSnSe₄ $d = 2.79 \mu m$, we obtain $\rho = 27.48 \Omega$ cm and for Cu₂ZnSnS₂Se₂ $d = 1.36 \mu m$, we obtain $\rho = 2.88 \Omega$ cm.