

- A. Szewczyk, Institute of Physics, Polish Academy of Sciences
- Multiferroics definition
- Origins of mutual exclusion of magnetic and electric orderings
- Mechanisms that make such coexistence possible:
 - perovskites: FeBiO₃, TbMnO₃
 - manganites: (Sr,Ba)MnO₃
 - olivines (?)
 - hexagonal manganites
- Ferrotoroidic ordering as a new kind of long-range order in multiferroics
- Ideas of application of multiferroics

H. Schmid, Multiferroic magnetoelectrics, Ferroelectrics 162, 317 (1994).

Multiferroics: materials in which several (at least two) qualitatively different long-range orderings coexist:

- ferromagnetic (or antiferromagnetic)
- ferroelectric
- ferroelastic (ferrodistorsive)


```
† 2 kwietnia 2015
```


Spaldin & Fiebig, Science 309, 391 (2005).

- Multiferroics materials in which several long-range orderings coexist (H. Schmid - 1994), e.g.:
 - ferromagnetic (or antiferromagnetic)
 - ferroelectric
 - ferroelastic
 - ferrotoroidic

 $\mathbf{T} = \frac{1}{2} \sum_{n} \mathbf{r}_{n} \times \mathbf{M}_{n} \neq 0$

toroidal moment

- Multiferroics materials in which several long-range orderings coexist (H. Schmid - 1994), e.g.:
 - ferromagnetic (or antiferromagnetic)
 - ferroelectric
 - ferroelastic
 - ferrotoroidic
- Origins of strong interest:
 - presence of "cross relations"
 - ferromagnetic ferroelectics: magnetoelectic effect (electrically driven magnetic memories!)
 - coding of information in sign of the toroidal moment (no stray field around magnetic vortices, thus, minimization of cross-talking)
 - ferroelectic ferroelastics: (sonar Peter and Jacob Curie)
 - ferromagnetic ferroelasticsi: (magnetostrictive devices)

Classification of multiferroics

1. Proper (or of the 1st type)

Weak direct coupling between different order parameters, e.g., indirect coupling via elastic properties ($BiFeO_3$).

2. Improper (or of the 2nd type)

Strong coupling between order parameters, e.g., compounds in which an electric order appears as the result of appearance of the magnetic order.

3. **Composites** – multiphase granular materials or multilayers (e.g., if we have a piezomagnetic and a piezoelectric component, the coupling between magnetization and polarization can be accomplished via elastic properties)

N.Hill/Spaldin, J. Phys. Chem. B 104, 6694 (2000)

These phenomena appear in materials of different properties and symmetry, thus, they exclude mutually:

- ferromagnetic ferroelectrics do not have:
 - time inversion symmetry
 - space inversion symmetry (1)
- ferroelectrics
 - dielectrics, P is a "normal" vector, no inversion symmetry, invariant to time inversion

• ferromagnets:

 conducting materials or insulators having the inversion symmetry, M is a pseudovector (axial vector), which changes sign under time inversion and is invariant to space inversion.

Promising materials: perovskites (ATO₃), *T* – transition metal

Perovskites – ATO₃

T-transition metal; A-RE, Y, alkaline earth (Ca, Sr, Ba)

Cubic structure of the ideal perovskite $(Pm\overline{3}m)$

~ 100 magnetic perovskites; ~ 100 frroelectric perovskites
 a few perovskites with coexisting magnetic and electric orderings
 (BiFeO₃, BiMnO₃, PbVO₃)

Perovskites – ATO₃

T-transition metal; A-RE, Y, alkaline earth (Ca, Sr, Ba)

Cubic structure of the ideal perovskite $(Pm\overline{3}m)$

experimental finding:

- in **ferroelectric** perovskites, the *d* shell of the transition metal *T* is empty (d^0)
- in **ferromagnetic** perovskites, the *T* ions have a partialy filled *d* shell.

Perovskites – ATO₃, T – metal przejściowy

- experimental finding:
 - in ferroelectric perovskites, d shell of the T ion is empty (a^0)
 - w ferromagnetycznych jony T mają częściowo zapełnioną powłokę d.
- explanation given by *ab initio* calculations (Spaldin/Hill, Khomski, Ederer):
 - LSDA + U method taking into account Coulomb interactions between some of localized electrons
 - LSDA + SIC method with correction for self interactions
 - for *T* with *d^o*, displacement of *T* towards O²⁻ and creation of a covalent bond (*d* orbitals of T and *p* orbitals of O) is energetically convenient.
 Thus, nonzero P appears (ferroelectric perovskites with z Ti⁴⁺, Ta⁵⁺, W⁶⁺)

 for *T* with partially filled *d* shell, intraatomic exchange interaction (Hund's coupling) eliminates this mechanism of appearance of nonzero polarization and ferroelectric ordering (np. CaMnO₃, *R*CrO₃)

Why do magnetic ferroelectrics exist at all?

- Perovskites (ATO₃):
 - "Paramagnetic doping" G. Smolenskii, Y.Venevtsev, partial replacement of T d⁰ ions with magnetic dⁿ ions

PbFe³⁺_{1/2}Nb⁵⁺_{1/2}O₃ T_{FE} = 387 K, T_N = 134 K, weak **FE-AM** coupling

Why do magnetic ferroelectrics exist at all?

• Perovskites (ATO₃):

2. "Lone pair of s² electrons" – Bi (dangling bond)

BiMnO₃ T_{FE} = 760 K, T_C =105 K **BiFeO₃** T_{FE} = 1100 K, T_N =643 K

- Ionic bonds are made of $6p^3$ electrons of bizmuth
- Remain 6s² electrons that do not participate in bonds
- Hybridization the *s* states and (empty) *p* states is the source of a large polarizability of Bi.
- It facilitates distortions of the crystalline structure and the appearance of FE ordering (Spaldin)
- Bi sublattice is responsible for the appearance of FE ordering P ~ 6 150 μC/cm²
- 3*d* ions sublattice is responsible for the magnetic ordering.
- Thus, m-e coupling is not especially strong.

BiFeO₃ - crystalline structure – Kubel&Schmid, Acta Cryst. B46, 698 (1990)

- rotation of octahedra around <111> axis by ±13.8°
- distortion of the octahedra
- displacement of Fe ions from the centers of octahedra
- displacement of Bi ions along <111> axis
- ferroelectric polarization result of existence of two different Bi-Fe distances along the <111> axis and of electron contribution

Why do magnetic ferroelectrics exist at all?

• **Perovskites (***AT*O₃**)**:

- 3. "Extension (stretching) of the oxygen octahedron" $Sr_{1-x}Ba_xMnO_3$
 - Sakai, ..., Y. Tokura, Phys Rev. Lett. 107, 137601 (2011)
 - Pratt, ..., B. Dabrowski, Phys. Rev. B 90, 140401 (2014)

rattle? (grzechotka)

$$t = \frac{\left(r_A + r_O\right)}{\sqrt{2}\left(r_B + r_O\right)}$$

Why do magnetic ferroelectrics exist at all?

• **Perovskites (***AT*O₃**)**:

3. "Extension (stretching) of the oxygen octahedron" - $Sr_{1-x}Ba_xMnO_3$

- Sakai, ..., Y. Tokura, Phys Rev. Lett. 107, 137601 (2011)
- Pratt, ..., B. Dabrowski, Phys. Rev. B 90, 140401 (2014)

High temperature phase – cubic Pm-3m FE phase – tetragonal

Results:

- Multiferroic phase (Pm-3m), MF, appears at ~285 K for $x \ge 0.44$.
- The phase transition (~400 K) to the ferroelectric, FE, phase, smeared over ca 30 K, is not noticeable in the temperature dependence of specific heat
- The phase transition to the antiferromagnetic, AF, phase damps the tetragonal deformation and diminishes the polarization.

Why do magn

- **Perovskites (***ATO*₃**)**:
 - "Extension (stretchin 3.
 - Sakai, ..., Y. Tokura
 - Pratt, ..., B. Dabrov

Results:

Multiferroic phase (Pm-3)

(c) 0 1.01 -2 c/a 1.005 ₹₹₹₹∓ *P*//[001] -6 200 300 400 -100-50 0 50 100 100 0

(uW/^BT) 0.001 0.001 0.001 0

0.003

(b)

 $T_{\rm N}$

0.5 T

Sakai et al., Phys Rev. Lett. 107, 137601 (2011)

- The phase transition (~4) ca 30 K, is not noticeable in the temperature dependence of specific heat
- The phase transition to the antiferromagnetic, AF, phase damps the tetragonal deformation and diminishes the polarization.

 $Sr_{0.5}Ba_{0.5}MnO_3$

2 K, 0 T

1 kHz

x=0.5

_ (a) 6

2

Pr (µC/cm²)

Why do magn

- Perovskites (ATO₃):
 - 3. "Extension (stretchin
 - Sakai, ..., Y. Tokura
 - Pratt, ..., B. Dabrov

Results:

- Multiferroic phase (Pm-3)
- The phase transition (~4(ca 30 K, is not noticeable in the temperature dependence of specific heat
- The phase transition to the antiferromagnetic, AF, phase damps the tetragonal deformation and diminishes the polarization.

J. Więckowski, M. U. Gutowska, A. Szewczyk i in.

Why do magnetic ferroelectrics exist at all?

- Perovskites (ATO₃):
 - 1. "Paramagnetic doping"
 - 2. "Lone pair of s² electrons"
 - 3. "Stretching of the oxygen octahedron"
 - 4. "FE state induced by magnetic ordering"

- PbFe³⁺_{1/2}Nb⁵⁺_{1/2}O₃
- BiFeO₃
- Sr_{1-x}Ba_xMnO₃
- TbMnO₃

- at room temperature, paraelectric, paramagnetic phase;
- at $T_N = 41$ K incommensurate, longitudinally modulated, antiferromagnetic, sinusoidal structure; inversion symmetry present, thus, paraelectric phase;

Kenzelmann et al., PRL **95**, 87206 (2005). Cheong et al., Nature Mat. **6**, 13 (2007)

- at room temperature, paraelectric, paramagnetic phase;
- at T_N = 41 K incommensurate, longitudinally modulated, antiferromagnetic, sinusoidal structure; inversion symmetry present, thus, paraelectric phase;
- at T_{loc} = 27 K, the phase transition to the incommensurate spiral structure without inversion; ferroelectric polarization (~0.08 μ C/cm² w T =10 K) found.

Kenzelmann et al., PRL **95**, 87206 (2005). Cheong et al., Nature Mat. **6**, 13 (2007)

- at room temperature, paraelectric, paramagnetic phase;
- at $T_N = 41$ K incommensurate, longitudinally modulated, antiferromagnetic, sinusoidal structure; inversion symmetry present, thus, paraelectric phase;
- at T_{loc}= 27 K, the phase transition to the incommensurate spiral structure without inversion; ferroelectric polarization (~0.08 μC/cm² w T =10 K) found.

B||b

Kimura et al., Nature **426**, 55 (2003).

- at room temperature, paraelectric, paramagnetic phase;
- at $T_N = 41$ K incommensurate, longitudinally modulated, antiferromagnetic, sinusoidal structure; inversion symmetry present, thus, paraelectric phase;
- at T_{loc}= 27 K, the phase transition to the incommensurate spiral structure without inversion; ferroelectric polarization (~0.08 μC/cm² w T =10 K) found.

What is a physical mechanism responsible for the appearance of the polarization?

Dzyaloshinski-Moriya coupling

$$\vec{D} \cdot \left(\vec{S}_i \times \vec{S}_j\right) \qquad \qquad \vec{D} \sim \vec{r}_i \times \vec{r}_j$$

Spiral structure is present per se in domain walls

Spiral structure is present per se in domain walls

A.S. Logginov, G.A. Meshkov, A.V. Nikolaev, E.P. Nikolaeva, A.P. Pyatakov, and A.K. Zvezdin *Appl. Phys. Lett.* **93**, 182510 (2008).

Olivine LiNiPO₄

Properties of olivines Li*T***PO**₄

- Strong coupling of the *T* ions in (100) planes (superexchange *T*-O-*T*)
- Weak coupling between (100) planes (superexchange *T*-O-P-O-*T*)
- Strong magnetocrystalline anisotropy (easy axis different for different *T* ions)
- Quasi two-dimensional Ising system
- Antiferromagnetic order appears at low temperatures (T_N < 50 K)
- Large ionic conductivity due to Li⁺ (promising cathode materials for Li-ion batteries)
- Very strong linear magnetoelectric effect $(P_a = \alpha_{ab}H_b \text{ dla } T = \text{Co } |\alpha_{yx}(4.2 \text{ K})| = 30.6 \text{ [ps/m]}),$

Structure of olivines, space group Pnma

but

no spontaneous dielectric polarization was found till now

Olivine LiNiPO₄

- Quasi two-dimensional Isinga system c is the easy magnetization axis
- Antiferromagnetic order develops in two steps, on lowering temperature :
 - 2^{nd} order transition: paramagnetic incommensurate phase (modulated , antiferromagnetic) T_{N1} =21.8 K
 - 1st order transition: incommensurate antiferromagnetic phase, T_{N1} =20.9 K
- Specific heat studies (M. Gutowska, S. Lewińska, A. Szewczyk, T. Zajarniuk et al.)

Olivine LiNiPO₄ specific heat

Field || do c

Magnetic field || to a and to b does not influence

Olivine LiNiPO₄ specific heat

Field || do c

Magnetic field || to a and to b does not influence

Are these two coupled transitions in two coupled subsystems?

Ni3 🍋

Ni1

Olivine LiNiPO₄

- Quasi two-dimensional Isinga system c is the easy magnetization axis
- Antiferromagnetic order develops on lowering temperature, in two steps:
 - 2^{nd} order transition: paramagnetic incommensurate phase (modulated , antiferromagnetic) T_{N1} =21.8 K
 - 1st order transition: incommensurate antiferromagnetic phase, T_{N1} =20.9 K
- Specific heat studies (M. Gutowska, S. Lewińska, A. Szewczyk, T. Zajarniuk et al.)

- Antiferromagnetic order devent
 - 2^{nd} order transition: paramantiferromagnetic) $T_{N1}=21$
 - 1st order transition: incomr
- Specific heat studies (M. Gu

Vaknin et al. Phys. Rev. Lett. 92, 207201 (2004).

Jensen et al. Phys. Rev. B

A more complicated structure without inversion, presence of the polarization allowed in $B \neq 0$

Pnma - grupa przestrzenna oliwinów

Olivine LiNiPO₄ – slope analysis

Slope analysis allows to put forward a hypothesis that the 1^{st} order phase transition to the commensurate antiferromagnetic phase is coupled to a transition to a ferroelectric phase. Thus, LiNiPO₄ is a multiferroic (?)

Toroidal ordering - olivine LiCoPO₄

- Co²⁺ in "corrugated" (100) planes
- Strong coupling between Co²⁺ ions in (100) planes
- Strong magnetic anisotropy (with b easy axis) [Vaknin et al., Phys. Rev. B 65, 224414 (2002)]
- Quasi two-dimensional Ising system
- Antiferromagnetic order at T_N = 21.6 K
- Co²⁺ magnetic moments deflected from the b axis by 4.6° (within the b-c plane) [Vaknin et al., Phys. Rev. B 65, 224414 (2002)]
- A small spontaneous net magntization exists (directed along the b axis !!!)

[Kharchenko et al. (among them R. Szymczak), Low Temp.Phys. 28, 646 (2002)]

conclusion: magnetic symmetry is not orthorhombic but monoclinic - *P12*¹/₁

Pnma – space group of olivines

0.4

0.6 T/T

0.2

0.8

Uporządkowanie toroidalne - oliwin LiCoPO₄

- In the P2'₁1 symmetry there can exist:
 - net magnetization along the b axis
 - modulated structures ($\perp b \mathbf{M}_n$ components)
 - nonzero toroidal moment $\mathbf{T} = \frac{1}{2} \sum \mathbf{r}_n \times \mathbf{M}_n$

- nonzero dielectric polarization

- The nonzero toroidal moment was found based on neutron studies) [Van Aken et al., Nature 449, 702 (2007); Vaknin et al., Phys. Rev. B 65, 224414 (2002)]
- Based on the optical studies (second harmonic generation), 4 different domain states were found and interpreted as 2 weakly ferromagnetic domains, each of which is divided into 2 torroidic domains, differing in sign of T. This was claimed to be the first observation of toroidic domains [Van Aken et al., Nature 449, 702 (2007) 120 citations]. Kharchenko, and Schmid (J.Phys. Condens. Matter 20, 434201 (2008)) proved this interpretation to be erroneous!

(review paper: A.V. Pyatakov, A.K. Zvezdin, Physics-Uspekhi Fiz. Nauk 182, 593 (2012)).

Magnetic field sensors (the most advanced idea)

- Magnetic field sensors (the most advanced idea)
- "Permanent" magnets switchable by electric field (a structure similar to the electronic paper)

- Magnetic field sensors (the most advanced idea)
- "Permanent" magnets switchable by electric field (a structure similar to the electronic paper)
- Write/read heads in hard drives
- Magneto-electric memory cells

- Magnetic field sensors (the most advanced idea)
- "Permanent" magnets switchable by electric field (a structure similar to the electronic paper)
- Write/read heads in hard drives
- Magneto-electric memory cells
- Elements for high frequency devices (modification of the antiferromagnetic resonance frequency with electric field; valves, circulators)
- Elements for magnonics, e.g., amplifiers of spin waves

- Magnetic field sensors (the most advanced idea)
- "Permanent" magnets switchable by electric field (a structure similar to the electronic paper)
- Write/read heads in hard drives
- Magneto-electric memory cells
- Elements for high frequency devices (modification of the antiferromagnetic resonance frequency with electric field; valves, circulators)
- Elements for magnonics, e.g., amplifiers of spin waves
- Suppliers for wireless net of sensors. Idea of an element drawing energy from a variable electromagnetic field and converting this energy into energy of a bank of capacitors.

Conclusions

- Multiferroics are interesting, scarse materials.
- From the classical point of view, conditions necessary for appearance of a ferromagnetic (*d*ⁿ) and of a ferroelectric order (*d*⁰) exclude each other.
- However, there are several physical mechanisms leading to the coexistence of these orderings in a one material, i.e., leading to the existence of multiferroics (e.g. multiferroic perovskites.
- Multiferroics in which ferrotoroidic order is one of the long-range orderings are particularly interesting.
- Several ideas of practical application of multiferroics are considered.

Conclusions

- Multiferroics are interesting, scarse materials.
- From the classical point of view, conditions necessary for appearance of a ferromagnetic (*d*ⁿ) and of a ferroelectric order (*d*⁰) exclude each other.
- However, there are several physical mechanisms leading to the coexistence of these orderings in a one material, i.e., leading to the existence of multiferroics (e.g. multiferroic perovskites.
- Multiferroics in which ferrotoroidic order is one of the long-range orderings are particularly interesting.
- Several ideas of practical application of multiferroics are considered.

Thank you for your attention!