Superconducting - ferromagnetic heterostructures

Solution New technologies \implies films & structures with nanoscale range of layer thickness

Close proximity of two long-range orders range orders new phenomena & potential applications

Outline

- 1. Introduction: symmetry of Cooper pairs
- 2. Proximity effect (exchange interactions)
 - a) Proximity effect at S/F interface
 - b) Singlet-triplet mixing and spin rotation
 - c) Early experiments (multilayers)
 - d) Josephson junction geometry
 - e) Spin valve geometry
- 3. Orbital effects
 - 1) Phase transition line
 - 2) Vortex pinning
- 4. Summary

Symmetry of Cooper pairs

Spin singlet (S=0) $\frac{1}{\sqrt{2}} (|\uparrow, k\rangle |\downarrow, -k\rangle - |\downarrow, k\rangle |\uparrow, -k\rangle)$ $\equiv (\uparrow \downarrow - \downarrow \uparrow)$ Spin triplet (S=1) S_z = 0 $\frac{1}{\sqrt{2}} (|\uparrow, k\rangle |\downarrow, -k\rangle + |\downarrow, k\rangle |\uparrow, -k\rangle)$ $\equiv (\uparrow \downarrow + \downarrow \uparrow)$

 $S_{z} = 1 \quad |\uparrow, k\rangle |\uparrow, -k\rangle \equiv \uparrow\uparrow$ $S_{z} = -1 \quad |\downarrow, k\rangle |\downarrow, -k\rangle \equiv \downarrow\downarrow$

Symmetry classification (Pauli principle & Fermi statistics)

Spin	Frequency	Momentum			Overall	Туре
Singlet (odd) ↑↓-↓↑	Even	Even	s	C	Odd	A
	Odd	Odd	p p	-	Odd	В
↑↑↓↓ Triplet (even) ↑↓+↓↑	Even	Odd	p	de la constante de la constant	Odd	С
	Odd	Even	s	d d d d d d d d d d d d d d d d d d d	Odd	D

S/F structures

homogeneous magnetization

Condensate wave function (pair correlation function) must be even with respect to interchange of time coordinates equal times correlations ≡ "even frequency pairing"

inhomogeneous magnetization

 $S_{,=} \pm 1$ triplet

wave function must be odd with respect to interchange of time coordinates **"odd frequency pairing**"

Bergeret et al., Rev.Mod.Phys. 2005 Eschrig, Rep.Prog.Phys. 2015

Conventional (s), high-Tc (d)

?

Superfluid ³He-A, Sr₂RuO₄, Heavy fermion compounds (UGe₂,URhGe,UCoGe,UIr)

S/F interface (inhomogeneous) (s)

Proximity effect

Spin singlet (S=0) $\frac{1}{\sqrt{2}} (|\uparrow, k\rangle |\downarrow, -k\rangle - |\downarrow, k\rangle |\uparrow, -k\rangle)$ $\equiv (\uparrow \downarrow - \downarrow \uparrow)$

Spin triplet (S=1)

$$z = 1 \quad |\uparrow, k\rangle |\uparrow, -k\rangle \equiv \uparrow\uparrow$$

$$z = 0 \quad \frac{1}{\sqrt{2}} (|\uparrow, k\rangle |\downarrow, -k\rangle + |\downarrow, k\rangle |\uparrow, -k\rangle)$$

$$\equiv (\uparrow\downarrow + \downarrow\uparrow)$$

$$z = -1 \quad |\downarrow, k\rangle |\downarrow, -k\rangle \equiv \downarrow\downarrow$$

Buzdin et al., JETP Lett. 1982; Buzdin&Kuprianov, JETP Lett. 1990; Radovic et al., PRB 1991

 $k_{F\uparrow} = k + \frac{Q}{2}$ $k_{F\downarrow} = k - \frac{Q}{2}$

Demler et al., PRB 1997

Cooper pair with centerof-mass momentum $\pm Q$

spin-dependent shift in the phase of the wavefunction:

$$(\uparrow \downarrow - \downarrow \uparrow) \Rightarrow (\uparrow \downarrow e^{iQR} - \downarrow \uparrow e^{-iQR})$$

= $(\uparrow \downarrow - \downarrow \uparrow) \cos(QR) + i (\uparrow \downarrow + \downarrow \uparrow) \sin(QR)$

spatial modulation of the pair amplitude

FFLO state (Fulde, Ferrel, Larkin, Ovchinnikov, 1964)

Early experiments

Oscillatory T_c(d_F) – Nb/Gd multilayers

Jing et al., PRL (1995)

mK measurements

wedge sample of CuNi on Nb (grown by magnetron sputtering)

Reentrant T_c(d_F) – bilayers Zdravkov et al., PRL(2006)

Early experiments

Josephson junction geometry

 $\succ \Delta \varphi(d_F) \implies I_c(d_F)$ $\succ \text{ Large } d_F \implies \text{ sc triplet current}$

Josephson junction experiments

Josephson junction experiments

S

Nature Commun. **Control of the** F=Co amplitude of Spin mixers triplet current F'=Ni₈₀Fe₂₀ (Permalloy, Py) S FAF

2014

Spin valve geometry

Oh et al., 1997

Provides exchange bias

Weaker pair-breaking in AP configuration \Rightarrow

Gu et al., 2002

Р (b) N (B 1 M (memu) AP 250 0 H (Oc) $= 2 K (< T_c)$ $T = 5 K (> T_c)$ -2 -3 -2 -1 0 H (kOe)

Rusanov et al., PRB 2006

Moraru et al., PRB 2006

Py/Nb/Py

Spin valve experiments

Triplet spin valve

Theory: Fominov at al., JETP Lett. (2010)

Main origin of the T_c change : drainage of singlets into the triplet channel

Leksin at al., PRL (2012)

Sign of ΔT_c depends on d_F

ΔT_c is the largest for α =90°

Spin valve experiments

Orbital effects

Long-range electromagnetic interactions of Cooper pairs with the magnetic moment of the magnetic texture

Vortex pinning

Vortex-domain interaction:

$$\boldsymbol{U} = -\overrightarrow{\boldsymbol{h}_{\boldsymbol{v}}} \cdot \overrightarrow{\boldsymbol{m}}_{\boldsymbol{\nabla}}$$

vortex magnetic field + screening currents generated in S by \overrightarrow{m} magnetic moment of the domain \overrightarrow{m}

enhanced vortex pinning ⇒ enhanced critical current density at high T

Phase transition line: $T_c(H)$

Nucleation of superconductivity: where $H_{loc} = H + H_{domain}$ is the lowest $H=0 \rightarrow$ above domain walls (DWS) $H>0 \rightarrow$ above negative domains $H<0 \rightarrow$ above positive domains

Phase transition line

Buzdin & Mel'nikov, PRB (2003); Aladyshkin, et al., PRB (2003); Lyuksyutov & Pokrovsky, Adv. Phys. (2004); Milosevic & Peeters, PRL (2004), PRL (2005); Aladyshkin & Moshchalkov, PRB (2006)

Aladyshkin et al., Supercond. Sci. Technol. (2009)

Magnetic texture \longrightarrow nonlinear modifications at small H_{ext} Two maxima of T_c away from H = 0

Phase transition line

H (Oe)

Yang et al., Nat. Mater. (2004) Nb/BaFe₁₂O₁₉ (monocrystals) Gillijns et al., PRL (2005) F/S/F trilayer, S=Nb (d=35nm, T_c ~ 3K), F=Co/Pd Zhu, Cieplak & Chien, Tunable bilayer Nb/[Co,Pt] (c) (d) (e) PRB(2010) **Nb** (20nm) <mark>Si</mark> [Co(0.6)/Pt(0.3)]₈ (f) (g) (h) 15° 7.94 20 sF 10° 45° 13° 7.925 **90°** 90 **(f)** 45 7.92 7.920 $T_c(K)$ _c^{max}(K) 7.915-7.90 7.910 $w > 2\xi$ bimodal 7.905-350 400 450 500 550 300 7.88 зF $w \lesssim 2\xi$ W(nm) -300 300 0 $w = 337nm \sim 2\xi$

Vortex pinning

Abrikosov vortex lattice

Goa et al., Supercond. Sci. Technol. 2001

Bezryadin et al., PRB 1996

microholes

MFN

Vortex chains in S/F bilayer

Karapetrov et al., PRB (2009)

Search for pinning enhancement in S/F bilayers

Bulaevskii et al., APL (2000)

Magnetic pinning ⇒ enhancement of the critical current density in S/F multilayers at high temperatures

 $S = YBa_{2}Cu_{3}O_{7} F = BaFe_{17}O_{19}, PrSrMnO,$ SrRuO₃, LaCaMnO, LaSrMnO, Co/Pt Pb/(Co/Pt), Nb/(Co/Pt), Nb/Cu/SrRuO₃

enhancement × 1.5 - 3

Pinning potentials ⇒ commensurability effects

Vortex pinning

Zhu et al., PRB 2010; Cieplak et al., PRB 2011 & 2013; Adamus et al., PRB 2016

Commensurability effects in the vortex activation energy

Narrow domains - single vortex chains wide domains - double vortex chains

Si Nb (20nm) and (76nm) [Co(0.6)/Pt(0.3)]₈

Pinning enhancement

Largest (to-date) and tunable pinning enhancement: most effective for $\lambda \sim w$

Summary

- 1. Proximity effect at S/F interface \rightarrow long-range, spin triplet supercurrent
- Orbital interactions → modification of phase transition line & enhancement of vortex pinning
- Potential applications: superconducting spintronic devices
- Near future: development of the control of these effects

Other experiments:

....

- high-T_c materials (oxide interfaces) Dybko & Przyslupski (2015)
- mesoscopic systems (vortex rachet effects, etc.)
- Topological insulators (spin-orbit ⇒ unusual sc states?)