# Spin orbital reorientation transitions induced by magnetic field

## **D. Sztenkiel**

Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, Warszawa, Poland sztenkiel@ifpan.edu.pl



Narodowe Centrum Nauki

## **Motivation: SRT like effect**



Here we report on a new effect similar to the spin reorientation transition (SRT) that takes place at two magnetic fields of  $B_{SORT1}$  and  $B_{SORT2}$ .

The effect is observed in the magnetization curves of small Mn<sup>3+</sup> magnetic clusters in the wurtzite GaN (being in a paramagnetic state) calculated using crystal field model approach.

D. Sztenkiel, arXiv:2202.07443

The observed effect arises from the interplay of the crystalline environment and the spin–orbit coupling  $\lambda$ SL, therefore we name it spin orbital reorientation transition (SORT)

The value of B<sub>SORT1</sub> depends on the crystal field model parameters and the number of ions N in a given cluster, whereas  $B_{SORT2}$  is controlled mostly by the magnitude of the spin-orbit coupling  $\lambda$ .

The explanation of SORT is given in terms of the spin  $M_s$  and orbital momentum  $M_1$ contributions to the total magnetization  $M = M_s + M_L$ .

#### **Dilute magnetic semiconductor**





Ga

С

N

Ga

#### **First spin orbital reorientation transition**





### (Ga,Mn)N

#### **Crystal field model**

Crystal field model for Mn<sup>3+</sup> ion in GaN: spin and orbital momentum S = 2 and L = 2, respectively





The spin  $M_s$  (a) and orbital momentum  $M_L$  (b) contributions (per one ion) to the total magnetization  $M = M_s + M_L$ .

#### Second spin orbital reorientation transition



Eigenfunctions and eigenvalues are obtained by a numerical diagonalization of the full (25  $\times$  25),  $(25^2 \times 25^2)$ ,  $(25^3 \times 25^3)$ ,  $(25^4 \times 25^4)$  Hamiltonian matrix, for a single ion, pair, triplet or quartet, respectively.

Red and green arrows denote the magnetizations  $M_S$ ,  $M_I$  and M = $M_{\rm S}$  +  $M_{\rm I}$  calculated for the magnetic field applied perpendicular and parallel to the **c** axis of GaN respectively. (a) The magnetic anisotropy (MA) is controlled by the dominant spin component M<sub>s</sub>. Antiparallel alignment of  $M_s$  and  $M_L$  is due to the presence of spinorbit interaction  $\lambda LS$  with  $\lambda > 0$ . (b) and (c) In the spin saturation regime with  $M_{S,\perp} = M_{S,\parallel} = 4 \ \mu B$  per ion, MA depends on values of the orbital contribution  $M_L$  to the total magnetization M. (c) A very strong magnetic field B overcomes the influence of the spin-orbit interaction what results in the reversal of M<sub>1</sub> and the occurrence of

D. Sztenkiel, arXiv:2202.07443

The work is supported by the National Science Center (Poland) through project OPUS 2018/31/B/ST3/03438 and by the Interdisciplinary Center for Mathematical and Computational Modelling at the University of Warsaw through the access to the computing facilities.