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Decomposition of Superfluid Weight Ds

parabolic band
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Ds =
nse2

m⇤

isolated flat band

g𝜇𝜈 - quantum metric 

Definition: Transport coefficient characterizing a superconductor

conventional 
contribution
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contribution
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Dµ⌫
s = Dµ⌫

s,conv +Dµ⌫
s,geom

in general

(most superconductors) (topological materials)

Flat Kane-Mele Model

• Two time-reversed copies of 
Haldane’s famous model 

• Spin-Chern number C 
• Additional hopping terms to 

flatten the lower band:
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while for Bp&0, relativistic Landau levels are obtained
as follows:

e,„~= ~ [(rn,c ) +nb ~ eBp ~
c ] ' (n ~ I ),

e p =am, c sgn(eBp) .

(4a)

(4b)

Every n ~ 1 level that evolves out of the upper band as
Bp is turned on is balanced by a level that evolves from
the lower band. However, the n =0 "zero-mode" energy
is not symmetric under Bp —Bp. It evolves from the
upper band if am, eBp is positive, and from the lower
band if it is negative.
In the time-reversal symmetric case t2sin&=0, the two

masses m+ and m — are equal, and the sum of the
Landau-level spectra derived from the two distinct zone
corners is particle-hole symmetric, and invariant under
Bp Bp. In this case, a" 0 by time-reversal invari-
ance. As the Hainiltonian is changed, tr"i' remains in-
variant, provided the Fermi level remains in a gap.
When Bp 0, models where the Fermi level is in the gap
and rn ~ and m —have the same sign can evolve continu-
ously from the time-reversal invariant case, and hence
have 0'~ 0.
To calculate tr"r for models where rn~ and trt have

opposite signs, I continuously turn on the external field,
then vary m+ and m until they become equal, at the
same time varying the Fermi level so at all times it lies in
a gap. Comparison of the occupation numbers of the
Landau levels obtained this way with those obtained by
continuously applying the field to the time-reversal in-
variant system shows that they differ by the complete
filling of one Landau level. Thus at T=O and with a
fixed chemical potential, the application of a weak exter-
nal magnetic field to a system where m~ and m have
opposite signs induces an extra fteld dependent g-round-
state charge density Atr ~ e Bp/h relative to the field-
independent charge density when these parameters have

f2

FIG. 2. Phase diagram of the spinless electron model with
~
tzlt~ ~

& —,'. Zero-field quantum Hall effect phases (v=+' l,
where o' =ve /h) occur if (Mlt2( &343(sing~. This figure
assumes that i2 is positive; if it is negative, v changes sign. At
the phase boundaries separating the anomalous and normal
(v=0) semiconductor phases, the low-energy excitations of the
model simulate undoubled massless chiral relativistic fermions.

the same sign. This allows 0." in the limit Bp=0 to be
evaluated as ve /h, where v= 2 [sgn(m —)—sgn(m+)l=+ 1 or 0. The phase diagram of v for the spinless
electron model as a function of M/t2 and p is shown in
Fig. 2.
I note that when the model has neither an inversion

center nor time-reversal invariance (i.e., when both M
and t2sinp are nonzero), so ~m~ ~

e ~m —~, the spec-
trum is no longer invariant under k —k, and the
fermion-doubling principle is defeated. In particular,
along the critical lines in the phase diagram where one of
rrt+ or rrt vanishes, the model has a low-lying massless
spectrum simulating nondegener ate relativistic chiral
fermions.
When m, 0, the fermion field theory derived from

the expansion (2) about the Fermi point with vanishing
gap has a charge-conjugation symmetry (particle-hole
symmetry) which is not present in the lattice model with
t2&0 from which it is derived. In the continuum field
theory, there is no lower bound to the Dirac sea of filled
electron states, and the establishment of absolute as op-
posed to relative values of cr"~ is ambiguous. Jackiw in-
vokes the charge-conjugation symmetry of (2) with
m =0 to assign the value o" =0 in the case of a
particle-hole symmetric Fermi level, where the "zero-
mode" Landau level (4b) is half filled. This would imply
a quantum Hall effect with v= 2 a if the zero mode is
filled, and v =——,

' a if it is empty. This suggests
"charge fractionalization, " and violates the principle
that a noninteracting electron system can only exhibit an
integral QHE. The model studied here shows how the
high-energy cutoff structure of a model with undoubled
fermions described by the relativistic Hamiltonian (2) at
low energies must break the charge-conjugation symme-
try, and give an extra contribution of +' —,

' to v, restor-
ing an integral QHE. Thus even if the low-energy spec-
trum consists of undoubled chiral fermions, their
partners must be present at high energies to restore a
properly integral QHE.
When electron spin is included without any other

change, there is an equal contribution from both spin
components, and 0 "r is doubled. However, a periodic lo-
cal magnetic field with the full symmetry of the lattice
will also couple to electrons with a Zeeman term 0'
=y&S', where S' is the azimuthal electron spin. This
term will relatively displace the up-spin and down-spin
bands by an energy ) hp, and if this exceeds the gap at
the Fermi level, the system will become a partially spin-
polarized metal. If —,

'
~ y ~

ii exceeds 3J3
~ t2 ~, the QHE

phases are completely eliminated, but if it is smaller,
they survive for small enough M and t2sinp. (The direct
transition from the normal to the anomalous semicon-
ductor phase as M is varied is then replaced by an inter-
mediate spin-polarized metallic phase. ) For the realiza-
tion of the internal field proposed earlier, yh (in units of
the rydberg) is given by C'g/a, where C' is another

2017

C=1

C=-1

C=1 C=-1

C=0

What is the effect of disorder on Ds?

• Anderson: superconductivity robust against non-magnetic disorder 
• Superfluid weight suppressed in conventional superconductors 
• Formation of islands → superconductor-insulator transition 

Effect of disorder on flat-band superconductors?

How does disorder affect superfluidity when the 
geometric contribution is large?

Does nontrivial topology lead to stronger 
disorder resilience?

Mean-field theory for disordered clusters
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• Disordered clusters with up to 128 sites and 
periodic boundary conditions 

• Time-reversal invariant singlet pairing 

• Solve mean-field equations self-consistently:

2

FIG. 1. Universality of the disorder-induced suppression
of the pairing amplitude and the superfluid weight across a
variety of lattice models [40]: (i)-(v) topological and triv-
ial extended Kane-Mele models, (vi)-(viii) trivial single-band
models (see text and SM [41] for details). The ensemble av-
erages of (a) the spatial average of the pairing amplitude �̄
and (b) the superfluid weight Ds are shown as a function of
the disorder strength W/W0.

the band gap, which all depend on the disorder strength.

In this Letter, we calculate the disorder-induced sup-
pression of the superfluid weight Ds for a generalization
of the Kane-Mele model [42], for which the low energy
bands’ topology and flatness can be easily tuned by vary-
ing the values of the model’s parameters, and for a simple
single band model. Our main results are shown in Fig. 1,
where the ensemble averages h�̄i/�0, hDsi/Ds,0 of the
spatially averaged pairing potential �̄ and the superfluid
weightDs are shown as a function of the disorder strength
W/W0. �0, Ds,0 are the pairing potential and the su-
perfluid weight, respectively, in the clean limit. W0 is
defined as the value of W for which h�̄i/�0 = 1/2. For
W ⇡ W0 the superconductor breaks up into supercon-
ducting islands. In all models the disorder dependence
of h�̄i and hDsi is the same after rescaling, pointing to
an unexpected universal behavior.

We consider a variety of tight-binding Hamiltonians
H0 with disorder potentials Vd supplemented by the
pairing interaction Hint, so that the full Hamiltonian
is H = H0 + Hint + Vd. We assume that H0 obeys
U(1) spin-rotation symmetry, Vd is represented by un-
correlated on-site energies uniformly distributed in the
interval [�W,W ], and Hint describes a local attraction
of strength U between the electrons that leads to a time-
reversal invariant singlet superconducting state described
by a real-valued pairing potential �(r). We neglect the
frequency dependence of U and the renormalization of
U due to the localization, because we are interested in
the comparison of the models instead of seeking for a
quantitative description of a particular system.

To model the disorder potential, we consider a large
cluster ofN sites repeated in spaceN times with periodic
boundary conditions. The full set of superconducting

mean-field equations for such a system is given by

�↵ =
1

N

X

i

Uhci↵"ci↵,#i, ⌫ =
1

NN

X

i,↵,�

hc
†
i↵�ci↵�i (2)

with ↵ = 1, . . . N , U > 0, and the filling per lattice site
⌫ 2 [0, 2] associated with both spin channels � =", #

[see Supplemental Material (SM) [41]]. The operators
c
†
i↵� (ci↵�) create (annihilate) an electron with spin �

at site r↵ in the i-th cluster. This is a large set of
N +1 equations, which we have to solve self-consistently
for the chemical potential µ and for the spatial profile
of the superconducting order parameter �↵ at a given
temperature T and interaction strength U . Therefore,
to reduce the computational cost of the calculation of
�(T, r↵), we assume that the spatial profile is approxi-
mately independent of temperature. With this assump-
tion, we obtain the (normalized) spatial profile �̂(r↵)
from the linearized self-consistency equations, which are
valid close to the critical temperature, and the overall
amplitude k�(T )k ⌘ [

P
↵ |�(T, r↵)|2]1/2 and ⌫ from the

nonlinear self-consistency equations (see SM [41]) to ob-
tain �(T, r↵)=k�(T )k�̂(r↵). We find that this approx-
imation leads to an underestimation of h�̄i that, being
very similar for all the models (see SM [41]), does not
a↵ect the relative comparison of the models.
Given a specific disorder realization, we compute the

corresponding superconducting order parameter �↵ and
the chemical potential self-consistently employing the re-
duced mean-field equations, and diagonalize the associ-
ated Bogoliubov-de Gennes Hamiltonian HBdG to deter-
mine its excitation energies Ei(k) and eigenstates  i(k),
where k is the superlattice momentum arising due to the
cluster periodicity and i is the band index. The full su-
perfluid weight Ds of the superconductor is given by

D
µ⌫
s =

e
2

~2
X

k,ij

n(Ej)� n(Ei)

Ei � Ej

⇣
h@µHBdGiij h@⌫HBdGiji

� h@µHBdG�
z
iij h�
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where h·iij ⌘ h i| · | ji, n(Ei) is the Fermi function,
and �

z = �z ⌦ 1N⇥N with �z being a Pauli matrix in
particle-hole space (see SM [41]). We further decompose
the full superfluid weight into a conventional contribution
Ds,conv and a geometric contribution Ds,geom. The con-
ventional contribution involves only intraband matrix el-
ements containing derivatives of the normal-state Hamil-
tonian’s energies ✏km�,
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with coe�cients C
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pp given in the SM [41]. The geo-

metric contribution, Ds,geom, comprises interband matrix
elements with derivatives of the normal-state Hamilto-
nian’s Bloch states (see SM [41]) and can be obtained
as the di↵erence between Ds and Ds,conv. In the limits
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FIG. 1. Universality of the disorder-induced suppression
of the pairing amplitude and the superfluid weight across a
variety of lattice models [40]: (i)-(v) topological and triv-
ial extended Kane-Mele models, (vi)-(viii) trivial single-band
models (see text and SM [41] for details). The ensemble av-
erages of (a) the spatial average of the pairing amplitude �̄
and (b) the superfluid weight Ds are shown as a function of
the disorder strength W/W0.

the band gap, which all depend on the disorder strength.

In this Letter, we calculate the disorder-induced sup-
pression of the superfluid weight Ds for a generalization
of the Kane-Mele model [42], for which the low energy
bands’ topology and flatness can be easily tuned by vary-
ing the values of the model’s parameters, and for a simple
single band model. Our main results are shown in Fig. 1,
where the ensemble averages h�̄i/�0, hDsi/Ds,0 of the
spatially averaged pairing potential �̄ and the superfluid
weightDs are shown as a function of the disorder strength
W/W0. �0, Ds,0 are the pairing potential and the su-
perfluid weight, respectively, in the clean limit. W0 is
defined as the value of W for which h�̄i/�0 = 1/2. For
W ⇡ W0 the superconductor breaks up into supercon-
ducting islands. In all models the disorder dependence
of h�̄i and hDsi is the same after rescaling, pointing to
an unexpected universal behavior.

We consider a variety of tight-binding Hamiltonians
H0 with disorder potentials Vd supplemented by the
pairing interaction Hint, so that the full Hamiltonian
is H = H0 + Hint + Vd. We assume that H0 obeys
U(1) spin-rotation symmetry, Vd is represented by un-
correlated on-site energies uniformly distributed in the
interval [�W,W ], and Hint describes a local attraction
of strength U between the electrons that leads to a time-
reversal invariant singlet superconducting state described
by a real-valued pairing potential �(r). We neglect the
frequency dependence of U and the renormalization of
U due to the localization, because we are interested in
the comparison of the models instead of seeking for a
quantitative description of a particular system.

To model the disorder potential, we consider a large
cluster ofN sites repeated in spaceN times with periodic
boundary conditions. The full set of superconducting

mean-field equations for such a system is given by
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at site r↵ in the i-th cluster. This is a large set of
N +1 equations, which we have to solve self-consistently
for the chemical potential µ and for the spatial profile
of the superconducting order parameter �↵ at a given
temperature T and interaction strength U . Therefore,
to reduce the computational cost of the calculation of
�(T, r↵), we assume that the spatial profile is approxi-
mately independent of temperature. With this assump-
tion, we obtain the (normalized) spatial profile �̂(r↵)
from the linearized self-consistency equations, which are
valid close to the critical temperature, and the overall
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nonlinear self-consistency equations (see SM [41]) to ob-
tain �(T, r↵)=k�(T )k�̂(r↵). We find that this approx-
imation leads to an underestimation of h�̄i that, being
very similar for all the models (see SM [41]), does not
a↵ect the relative comparison of the models.
Given a specific disorder realization, we compute the

corresponding superconducting order parameter �↵ and
the chemical potential self-consistently employing the re-
duced mean-field equations, and diagonalize the associ-
ated Bogoliubov-de Gennes Hamiltonian HBdG to deter-
mine its excitation energies Ei(k) and eigenstates  i(k),
where k is the superlattice momentum arising due to the
cluster periodicity and i is the band index. The full su-
perfluid weight Ds of the superconductor is given by
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where h·iij ⌘ h i| · | ji, n(Ei) is the Fermi function,
and �

z = �z ⌦ 1N⇥N with �z being a Pauli matrix in
particle-hole space (see SM [41]). We further decompose
the full superfluid weight into a conventional contribution
Ds,conv and a geometric contribution Ds,geom. The con-
ventional contribution involves only intraband matrix el-
ements containing derivatives of the normal-state Hamil-
tonian’s energies ✏km�,
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pp given in the SM [41]. The geo-

metric contribution, Ds,geom, comprises interband matrix
elements with derivatives of the normal-state Hamilto-
nian’s Bloch states (see SM [41]) and can be obtained
as the di↵erence between Ds and Ds,conv. In the limits
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FIG. 1. Universality of the disorder-induced suppression
of the pairing amplitude and the superfluid weight across a
variety of lattice models [40]: (i)-(v) topological and triv-
ial extended Kane-Mele models, (vi)-(viii) trivial single-band
models (see text and SM [41] for details). The ensemble av-
erages of (a) the spatial average of the pairing amplitude �̄
and (b) the superfluid weight Ds are shown as a function of
the disorder strength W/W0.
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W ⇡ W0 the superconductor breaks up into supercon-
ducting islands. In all models the disorder dependence
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of strength U between the electrons that leads to a time-
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where h·iij ⌘ h i| · | ji, n(Ei) is the Fermi function,
and �
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particle-hole space (see SM [41]). We further decompose
the full superfluid weight into a conventional contribution
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ements containing derivatives of the normal-state Hamil-
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elements with derivatives of the normal-state Hamilto-
nian’s Bloch states (see SM [41]) and can be obtained
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FIG. 2. Disorder-induced suppression of the superfluid weight
in the extended Kane-Mele model [40]. (a) Evolution of the
energy gap and the bandwidth of the lower band as a function
of M . C is the Chern number of the lower spin-up band. (b)
Ds as a function of M for di↵erent values of W/W0 and ⌫ =
1/2. The vertical dotted black line indicates the topological
transition in the clean system. (c), (d) Energy bands of the
clean systems along high-symmetry lines of the Brillouin zone
for M values corresponding to topologically distinct cases.
The dotted black lines indicate the Fermi level corresponding
to ⌫ = 1/2. (e), (f) hDsi as a function of W/W0 for ⌫ = 1/2.

of a trivial parabolic band and an ideal flat band with-
out disorder, this decomposition reproduces the conven-
tional result Ds = e

2
n/m

⇤, and Eq. (1), respectively.
The considered disorder preserves the symmetries of the
respective clean systems on average. In particular, on
average it preserves the C3 symmetry of the Kane-Mele
models and the C4 symmetry of the single-band models
(see SM [41]). Consequently, the disorder-averaged su-
perfluid weight tensors of our models are proportional to
the identity matrix and we have D

xx
s = D

yy
s ⌘ Ds.

We first consider an extended Kane-Mele model on a
honeycomb lattice given by a Haldane model [43] for each
spin channel and additional hoppings between 3rd- (t3)

and 4th-nearest neighbors (t4):
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Here, hi, jin denotes pairs of n-th neighbors, � = ±1 ⌘

", # is the spin index of the particles, M is a staggered on-
site potential, µ is the chemical potential, and 'ij = ±'

is a next-nearest-neighbor (NNN) hopping phase whose
sign depends on the hopping direction and on the spin
(see SM [41]). The spin-dependence of the NNN hop-
ping phase is chosen in such a way that the full non-
interacting Hamiltonian is time-reversal symmetric. We
call the model in Eq. (5) the extended Kane-Mele model
because in the limit t3 = t4 = 0 and ' = ⇡/2 it reduces
to the model introduced by Kane and Mele in Ref. 42.
Importantly, our model is well-suited for the study

of topological flat bands: By taking t2 = 0.349t, t3 =
�0.264t, t4 = 0.026t, ' = 1.377, and M = 0 [model (i)
in Fig. 1], the lowest spin-degenerate bands are almost
flat and have Chern numbers C = ±1 [see Fig. 2(a), (c)].
Therefore the superfluid weight is almost entirely geo-
metric in the clean limit, i.e., Ds ' Ds,geom satisfying
Eq. (1) with � ⇡ U

p
⌫(1� ⌫)/2. Fig. 2(e) shows the

disorder-averaged superfluid weight hDsi for ⌫ = 1/2,
U = 3t and T = 0 [44] displaying the behavior already
presented in Fig. 1(b), but here we have decomposed it
into geometric and conventional contributions [45]. The
superfluid weight associated with a flat band is almost
entirely geometric for all values of the disorder strength.
By increasing M the previously flat band becomes

more dispersive and the bulk energy gap closes around
M = 1.75t, so that after the reopening of the bulk gap
both energy bands are trivial (C = 0) [Fig. 2(a)]. Thus,
as we increase the parameterM , the superfluid weight ac-
quires a finite conventional contribution due to the grow-
ing dispersion of the lower band. The fraction of the
geometric contribution decreases, so that deep inside the
trivial phase the geometric contribution practically van-
ishes and the superfluid weight becomes almost entirely
conventional in the absence of disorder. This picture
changes with increasing disorder, as we show in Fig. 2(f).
First, we observe that the conventional contribution is
linearly suppressed in the low-disorder regime, whereas
the suppression is quadratic for the full superfluid weight.
In contrast, the geometric contribution is enhanced for
small disorder until it reaches a turning point. At this
point the conventional contribution is nearly zero and
the superfluid weight becomes entirely geometric, even
though the underlying bands are topologically trivial.
Importantly, although the geometric and conventional

contributions are remarkably di↵erent depending on M ,
surprisingly the disorder induced suppression of the
scaled superfluid weight hDsi/D0 as a function of the
scaled disorder strength W/W0 is completely indepen-
dent of the value of M [see Fig. 2(b)]. We find essentially
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Take-home messages

• First study of disorder in flat-band superconductors:  
→ relevant for twisted bilayer graphene 

• Suppression of superfluid weight and pairing amplitude is 
universal across various models 

• Band topology/geometry does not affect superfluidity in 
the presence of disorder  

• Flat-band superconductors are as resilient to disorder as 
conventional (non-flat band) superconductors 
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