NATIONAL SCIENCE CENTRE POLAND UMO-2016/22/E/ST3/00553

WARSAW UNIVERSITY OF TECHNOLOGY

ALD grown ZnMgO:Al on Si for photovoltaic applications: test solar cells performances for Mg content up to $\sim 12\%$ at.

J. Kurek ^{1,2}, R. Schifano¹, S. Gierałtowska¹, Ł. Wachnicki ¹, K. Kopalko¹, B. Witkowski¹, M. Godlewski¹, M. Pawłowski², C. Jastrzębski²

1) Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02 668 Warsaw, Poland 2) Faculty of Physics, Warsaw University of Technology, Al. Koszykowa 75, PL-00 662 Warsaw, Poland

Motivation

Heterojunction solar cells based on ZnMgO and Si employed as an emitter and absorber, respectively, have a potential theoretical efficiency of ~24% if the conduction band offset between ZnO and Si is eliminated by Mg alloying [1]. This approach has been experimentally tested and has shown that an efficiency increase from $\sim 3,7\%$ to $\sim 6\%$ can be achieved following this route [2]. However, as discussed in Ref. 2, further improvements in efficiency are hindered by the increase in resistivity of the ZnO-based layer when the Mg content overcomes \sim 2-3 at.%. In the presented work the possibility of increasing the Mg content above \sim 2-3 at.%, while maintaining a low resistivity by Al doping, has been investigated.

Samples

The n-ZnMgO/ZnMgO:Al /AZO layers deposited by ALD on p-Si substrate

Experimental techniques

Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM+EDX)

Fig. 1 (A): The schematic draw of the studied structures (not scaled). (B): Cross section view of a ZnMgO film from set A (see Tab.1).

- Thickness and composition of the ZnMgO/ZnMgO:Al layers
- Hall measurements of ZnMgO/ZnMgO:Al layers
 - \succ Electron concentration (n), electron mobility (μ), resistvity (ρ)
- Capacitance and conductance vs voltage (C-V and G-V, respectively) measurements
 - \succ Built-in potential (V_{bi}), effective acceptor concentration (N_{eff})
- Current vs voltage (I-V) measurements in dark and under standard illumination
 - \succ Open circuit voltage (V_{oc}), short circuit current density (J_{sc}), efficiency (η), fill factor (FF), series resistance (R_s)
- External quantum efficiency (EQE) measurements of the ZnMgO:Al/Si heterostructures
 - Optical band gap, J^{EQE}

Results

Set of samples	Mg (% at.)	Al (% at.)	Thickness (nm)
А	1,8 ± 0,2	0	470 ± 13
В	2,1 ± 0,3	0	448 ± 9
С	2,3 ± 0,2	0	406 ± 34
D	3,0 ± 0,1	2,4 ± 0,1	474 ± 2
E	5,3 ± 0,5	2,4 ± 0,1	499 ± 7
F	7,0 ± 0,2	2,3 ± 0,1	503 ± 3
G	8,1 ± 0,4	2,8 ± 0,2	453 ± 20
Н	12,2 ± 0,7	2,5 ± 0,3	464 ± 24

Fig. 2: Hall measurements: electron concentration, mobility and resistivity versus Mg content. A visible increase in the concentration of electrons (by an order of magnitude), with a simultaneous decrease in the resistivity of the layer to $0,001 \Omega$ cm with Al introduction (set D) proves that the difficulties described in Ref. 2, have been overcome, that is, this approach permits to increase the Mg content up to ~ 12 at.% while maintaining the required electrical characteristics of the layers.

Table 1. **Composition** and **thickness** of the examined ZnMgO:Al layers

 \sim 12 at.%) is observed.

(C) **Fill factor** versus Mg content. The fill factor is fluctuating around $\sim 55\%$ independently of the Mg content, thus suggesting other causes than Mg introduction as limiting factors (metallization, cell design, as an example).

Summary

It has been found that, as expected, by keeping the Al content ~ 2 at.%, up to ~ 12 at.% Mg can be incorporated into the ZnO layers with the films still maintaining excellent electrical properties: $ightarrow n = (2,0\pm0,2)\cdot10^{20} \text{ cm}^{-3}$

- $\blacktriangleright \mu = (2,7\pm0,3) \text{ cm}^2/\text{Vs}$
- $\succ \rho = (11,08\pm0,01) \text{ m}\Omega \text{ cm}$

For the test solar cell with the Mg content equal to $(12, 2\pm 0, 7)$ %:

(see Table 1 for the labels – the dashed lines are a guide to the eye)

- Reduction of the conduction band misalignment from $(0,5\pm0,1)$ eV to (0,38±0,03) eV
- \succ V_{oc} = (430±16) mV
- \succ Efficiency (7,2±0,4) %.

References

[1] K. E. Knutsen, R. Schifano et al. Phys. Status Solidi A 210, No. 3, 585–588 (2013). [2] R. Pietruszka, R. Schifano et al. Solar Energy Materials & Solar Cells 147, 164–170 (2016). [3] Y. Wang, W. Tang et al. Thin Solid Films 565 (62-68) (2014).

Financial support from the National Science Centre of Poland (contract number: UMO-2016/22/E/ST3/00553) is acknowledged.