Designing of Experimental Setup for Impact Induced Mechanoluminescence Measurements

Syed Shabhi Haider^a,* Justyna Barzowska^b, Piotr Sybilski^a, Andrzej Suchocki^a

^a Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw, 02-668, Poland

^b Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, ul. Wita Stwosza 57, 80-952 Gdansk, Poland *Email: haidersyedshabhi@gmail.com

Motivation and Aim of study

Mechanoluminescence (ML) is a fascinating phenomenon, exhibited by several solid materials in terms of the emission of light upon mechanical stress and physical deformation [1]. Today, the ML have found tremendous applications in robotics, civil engineering, displays and medical science [2]. ML occurs due to the de-trapping of trapped charges, which are found in doped wide band gap semiconductors. In this work, we present a novel designing and performance of a low-cost, simple laboratory set-up to study the mechanical impact induced ML (I-ML) properties of materials, which is different from previously used devices. We conducted comprehensive testing using several commercially available ML materials, such as $SrAl_2O_4$:Eu,Dy, and $Sr_{0.95}Ca_{0.05}(SO_4)$:Mn, to verify the performance of the presented self-designed I-ML.

- The self-constructed setup for measuring the I-ML properties is accurately calibrated, and its reliability is also tested by using various ML materials.
- The range of incident kinetic energies can be easily extended, by using another available air-soft gun with different projectile speed or by altering the masses of the fired projectile.
- It would be possible to adapt the setup for the I-ML spectra by replacing the detection part i.e., photomultiplier and digital oscilloscope with a fiber optic spectrometer.
- Such an integrative approach to design a low-cost (~100 €), simple and user-friendly setup helps in exploring the I-ML behavior of ML materials, which is very useful for the advancement of impact detection.

Acknowledgement	References	
The authors acknowledge funding from the National Science Centre Poland,	[1] Zhuang, Y. and R.J. Xie, Mechanoluminescence rebrightening the prospects of stress sensitives. Advanced Materials, 2021. 33(50): p. 2005925.	ng: a
through the projects No: 2019/33/B/ST8/02142.	[2] Zhang, JC., et al., Trap-controlled mechanoluminescent materials. Progress in Materials Sci 2019. 103: p. 678-742.	ence,