Epitaxial Mn₅Ge₃C_x films - effect of carbon doping on magnetic anisotropy studied by means of ⁵⁵Mn NMR

R. Kalvig¹, E. Jędryka¹, M. Wójcik¹, M. Petit² and L. Michez²

(1) Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland (2) Aix Marseille Univ, CNRS, CINAM, Marseille, France

Objectives

Mn₅Ge₃(001)/Ge(111) epitaxial films: a potential source of polarized carriers directly into Ge.

Interesting features: high spin polarization (42%), easy fabrication, high Curie temperature ($T_c = 296$ K), and full compatibility with Si and Ge based technology

Doping with carbon :

- Increased Curie temperature from 296 K up to 430 K •
- Decreased uniaxial magnetocrystalline anisotropy, evidenced by FMR

Mn₅Ge₃ – crystal structure

- Nowotny phase, hexagonal structure space group P6₃/mcm
- Mn positions: Mn_{I} (4d) : μ_{I} = 1.94 μ_{B} and Mn_{II} (6g) : μ_{II} = 3.34 μ_{B} Forsyth and Brown, J. Phys. Cond. Mat. 2 2713 (1990)

Methods

Experimental tool: ⁵⁵Mn NMR

 $v_{\rm NMR} = \gamma B_{\rm eff} \approx B_{\rm hf} \approx B_{\rm hf}^{\rm cF} + B_{\rm hf}^{\rm orb} = - A_{\rm cF} \mu^{\rm s}_{\rm loc} + A_{\rm orb} \mu^{\rm L}_{\rm loc}$

From calculations of hyperfine fields in Mn₃Ge₃ $A_{cF} = 12 T/\mu_B A_{orb} = 27 T/\mu_B$ 5. Picozzi, A. Continenza, and A.J. Freeman, Phys. Rev. B 70 235205 (2004)

Aim of this study: to understand the origin of magnetocrystalline anisotropy in the entire concentration range

Results: ⁵⁵Mn NMR in the undoped Mn₅Ge₃ film (300 nm)

External magnetic field perpendicular to the film

External magnetic field <u>in-plane</u> of the film

In demagnetized film NMR signal originates from magnetization oriented along the easy axis (c-direction)

Results: ⁵⁵Mn NMR in Mn₅Ge₃C_x films (t = 30 nm; $0 \le x \le 0.85$)

Conclusions

Strong anisotropy of ⁵⁵Mn hyperfine fields between the hexagonal c-axis and the c-plane in Mn₁ and Mn₁₁ lattice sites within pristine Mn_5Ge_3 . Mn_{II} site: an additional modulation of hyperfine field in the c-plane.

- Isotropic Fermi contact term constitutes the main component of hyperfine fields, but a significant anisotropic contribution due to the anisotropy of orbital moment μ_L is evidenced by the NMR data.
- \succ Carbon dopant occupies selectively interstitial 2b voids, locally changing the anisotropy of orbital contribution to the hyperfine field on those Mn_{II} atoms that form a host octahedron. The modulation of anisotropy within the cplane is lifted. Mn_I sites, more distant from the dopant

380 360 **400** 340 Frequency [MHz]

Mn_{II} atoms with a carbon neighbour new spectrum component at 344 MHz due to co-existing signals from in-plane and out-of-plane orientation

 $x \ge 0.5$: No changes in the NMR spectrum

location are less affected. > A linear drop of hyperfine field anisotropy upon carbon doping corresponds to the change of bulk uniaxial magnetocrystalline anisotropy evidenced by FMR, and reflects the increasing number of Mn_{II} atoms affected by their carbon neighbors. > The above observations confirm that the magnetocrystalline anisotropy observed in this system has a single ion origin and can be linked to the observed

anisotropic orbital moment of manganese.