⁵⁵Mn NMR investigation on Mn₂GaC nanolaminated thin film

J. Dey¹, R. Kalvig¹, E. Jędryka¹, M. Wójcik¹, U. Wiedwald², M. Farle², and J.Rosen³ ¹Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland ²Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057, Duisburg, Germany

³Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden

Linköping, Sweden

INTRODUCTION

Background

 $M_{n+1}AX_n$ (MAX) phases $M \rightarrow early transition elements,$ $A \rightarrow IIIA$ and IVA group elements, $X \rightarrow either carbon or nitrogen,$ n (1, 2 or 3) is the number of layers.

Mn₂GaC

Consisted of only one transition metal element, has been synthesized in thin film(nanolaminated) form to understand the fundamental structural and magnetic properties.

It belong to **hexagonal** crystal structure symmetry of space group $P6_3/mmc$.

Neutron reflectometry on Mn₂GaC

- Long range anti-ferromagnetic structu (AFM[0001]^A₄)
- Strong intralayer ferromagnetic coupling between Mn-C-Mn → Supermoment model
- Long range magnetic repetition distanc
 ~25Å(nearly two structural unit cell)
- Inconsistence with the previous VSM results showing remanent magnetization.

Motivation

- Theoretical prediction of complex magnetic structure with competing ferromagnetic and antiferromagnetic interactions.
- Lack of explanation of previously observed remanent magnetization from macroscopic magnetic measurement in predicted AFM[0001]^A₄ structure from neutron reflectometry produce inconclusive structural information for Mn₂GaC.
- Nuclear magnetic resonance (NMR) in MgO(111)/Mn₂GaC 100nm thin film in both zero-field(ZF) and External magnetic field (B_{ext}) will provide an microscopic insight into the magnetic structure of the system.

EXPERIMENTAL RESULTS

Evolution of ⁵⁵Mn NMR spectra of MgO(111)/ Mn₂GaC thin film when 0-1T B_{ext} applied along in-plane axis of thin film

NMR Theory μ , B_{ext}cos θ **B**_{ext} NMR frequency(ω) $= \gamma \left| \vec{B}_{hf} + \vec{B}_{ext} + \vec{B}_{dem} \right|$ **B**_{ext}sinθ $= \gamma \left[B_{hf} - B_{ext} cos\theta \right]$

- ⁶⁹Ga, ⁷¹Ga corresponds to single hyperfine field $(B_{hf}) = 15.75$ T.
- The large hyperfine field at Ga is due to the transferred hyperfine field from surrounding Mn-

