Omer Farooq*, Afshin Akhshani, Małgorzata Białous, Szymon Bauch, Michał Ławniczak, Leszek Sirko ${ }^{\dagger}$
Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland.

Email: *farooq@ifpan.edu.pl , †sirko@ifpan.edu.pl

Abstract

We analyze the situation when the original graph is split at edges and vertices into two disconnected subgraphs. We show that there is a relationship between the generalized Euler characteristic $\varepsilon_{0}\left(\left|V_{D_{0}}\right|\right)$ of the original graph and the generalized Euler characteristics $\varepsilon_{i}\left(\left|V_{D_{i}}\right|\right), i=1,2$, of two disconnected subgraphs, where $\left|V_{D_{o}}\right|$ and $\left|V_{D_{i}}\right|, i=1,2$, are the numbers of vertices with the Dirichlet boundary conditions in the graphs [1-4]. Theoretical predictions are verified experimentally using microwave networks which simulate quantum graphs.

Introduction

Quantum graphs were introduced by Linus Pauling and recently they have been used to model a large variety of physical systems and phenomena such as quantum wires, mesoscopic quantum systems, multi-walker and percolated quantum walks, and the photon number statistics of coherent light.
\rightarrow The formula for calculating $\mathcal{E}\left(\left|V_{D}\right|\right)$ for graphs and networks:

$$
\mathcal{E}\left(\left|V_{D}\right|\right):=\chi-\left|V_{D}\right|=\left.8 \pi^{2} \sum_{k_{n} \in E\left(L^{\mathrm{N}, \mathrm{D}}(\mathrm{~T})\right)} \frac{\sin \left(k_{n} / t\right)}{\left(k_{n} / t\right)\left((2 \pi)^{2}-\left(k_{n} / t\right)^{2}\right)}\right|_{t \geqslant t_{0}}
$$

$\cdot \sum_{k_{n}-\text { Square roots of the Eigen energies } \lambda_{n}}\left(L^{\mathrm{N}, \mathrm{D}}(\Gamma)\right.$ - Spect (Γ) with standard vertex conditions.

- $t=t_{0}=\frac{1}{2 l_{\text {min }}}$
- The formula for the minimum number of the lowest eigen--values required to calculate $\mathcal{E}\left(\left|V_{D}\right|\right)$ with ϵ accuracy:

$$
K \geqslant|V|+2 \mathcal{L} t\left[1-\exp \left(\frac{-\epsilon \pi}{L t}\right)\right]^{-1 / 2}
$$

- |V| - total number of graph vertices.
- $\mathrm{L}=\sum_{\text {ees }} l_{e}$ - total length of the graph.
- ϵ - accuracy of determining ε.

Experimental setup and results

Figure 1. (a) The scheme of the original network $\Gamma_{o}(5,10,0)$ which was split at two edges and two vertices into two subnetworks $\Gamma_{1}(6,8,0)$ and $\Gamma_{2}(5,4,0)$. In this case all networks possess vertices with the Neumann boundary conditions which are marked by blue dots and capital letters N. (b) The original network $\Gamma_{o}(5,10$, 0) was split at two edges and two vertices into two subnetworks $\Gamma_{1}(6,8,0)$ and $\Gamma_{2}(5,4,4)$. The subnetwork $\Gamma_{2}(5,4,4)$ possesses the mixed boundary conditions: four vertices with the Dirichlet boundary conditions (red dots and capital letters D) and one vertex with the Neumann boundary condition (blue dot and the capital letter N). marks the semi-infinite lead attached to the networks.

Figure 2. The experimental set-up for measuring the resonances of the microwave networks. It contains Agilent E8364B vector network analyzer (VNA) and HP 85133-60016 flexible microwave cable that connects the VNA to the network. The microwave network $\Gamma_{\mathrm{o}}(5,10,0)$ possesses five vertices with the Neumann boundary conditions. The inset shows the spectrum of this network in the frequency range $v=[1,2] \mathrm{GHz}$.

Summary and Conclusions

We derived the relationship which links the generalized Euler characteristic $\varepsilon_{o}\left|V_{D_{o}}\right|$) of the original graph (network) which was split at edges and vertices into two subgraphs (subnetworks) with their generalized Euler characteristics $\mathcal{E}_{i}| | V_{D_{i}}| |, i=1,2$. We demonstrated that the experimental evaluation of the generalized Euler characteristics $\left.\varepsilon_{o}\left|V_{D_{o}}\right|\right)$ and $\varepsilon_{i}\left(\left|V_{D_{i}}\right|\right), i=1,2$, also in the case of the mixed boundary conditions allow to determine the sum of the edges and vertices $\left|E_{c}\right|+\left|V_{c}\right|$ where the two subgraphs (subnetworks) were initially connected. The presented method appeared to be especially useful for the graphs (networks) with the Neumann boundary conditions because it allows to find $\left|E_{\mathrm{c}}\right|+\left|V_{\mathrm{c}}\right|$ without knowing graphs (networks) topologies. In this case if we additionally know either $\left|E_{\mathrm{c}}\right|$ or $\left|V_{\mathrm{c}}\right|$, the generalized Euler characteristic allows us to find accordingly the exact number of vertices $\left|V_{c}\right|$ or edges $\left|E_{c}\right|$ where the original graph (network) was split.

