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 Thin films of thickness within the range 0.3 – 1.5 µm were 
grown by molecular beam epitaxy (MBE) using BaF2(111), 
BaF2 (001) and CdTe/GaAs (001) substrates. 

 The Samples were grown using SnTe, Mn, Te effusion cells to 
vary both Mn content and carriers concentration. Additional 
Cd source were used to refresh CdTe buffer layer on GaAs 
(001) substrate. 

 Additional buffer layers of SnTe were deposited in order to 
decrease lattice mismatch and to accommodate the strain 
between substrate and primary Sn1-xMnxTe layer.  

 The X-ray diffraction analysis of the layers on three types of 
the substrates revealed the expected growth direction and 
the rock-salt crystal structure for each sample.  
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 The analysis of the angular dependence of the FMR resonance field revealed a dominant magnetic shape anisotropy contribution for all investigated layers with 
easy magnetization axis located in the plane of the layer. However, while all (001) oriented layers were found to exhibit perfect cubic symmetry, those grown on 
BaF2 (111) substrate reveal in angular dependence of FMR resonant field the linewidth features characteristic of material with rhombohedral distortion along the 
[111] growth direction. 

 Such distortion is known in SnTe and GeTe-based crystals. In contrast to closely related GeMnTe layers, where such crystal distortion induces perpendicular 
magnetic anisotropy [3], in Sn1-xMnxTe layers  in all the substarates studied the easy direction of magnetization remains in the plane of the layer. 
 

 We grew a series of Sn1-xMnxTe (0.03 < x < 0.08) 
epitaxial layers on BaF2 (111), BaF2 (001) and CdTe/GaAs 
(001) substrates. 

 

  We found that in Sn1-xMnxTe (0.03 ≤ x ≤ 0.084) layers, 
even for the highest Mn content studied and optimal 
hole concentration, the ferromagnetic transition 
temperature is below TC < 10 K, i.e., about twice smaller 
than in corresponding bulk crystals [1]. It indicates that 
in our optimal growth regime the substitution of Mn 
ions at cation sites of the rock-salt lattice of SnTe is 
limited [2]. 

 
  FMR studies of magnetic anisotropy confirm in-plane 
easy magnetization axis in Sn1-xMnxTe layers on both  
substrates.  
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 Sn1-xMnxTe is a IV-VI semimagnetic (diluted magnetic) semiconductor known to exhibit both the properties of topological 
crystalline insulators (TCI) and carrier – induced ferromagnetism. The incorporation of magnetic ions (Mn2+) into host matrix 
turns Sn1-xMnxTe into a ferromagnet at helium temperatures. Here the magnetic properties depends not only on manganese 
content but also on concentration of carriers due to long – range RKKY exchange interactions [4].   

 
 To fully exploit this unique physical regime we carried out technological program of molecular beam epitaxial growth of Sn1-

xMnxTe (x ≤ 0.1) layers on various crystalline substrates and experimental studies of the dependence of their magnetic, 
structural, and electric properties on Mn content, carrier concentration and crystal deformation. 
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FCC structure 

Distribution of charges Crystallographic planes 

RKKY exchange interaction 

BaF2 (111/001) 

SnTe 

Sn1-xMnxTe a0 = 6.31 Å ± 0.02 Å (NaCl) 
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GaAs (001) 

CdTe 

SnTe 

Sn1-xMnxTe 

ZnTe 
a0 = 5.654 Å (zinc blende) 
(001) ± 2° miscut 

a0 = 6.1 Å (zinc blende)  

a0 = 6.48Å (zinc blende)  

a0 = 6.327Å (NaCl)  
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 The RKKY is a long – range indirect exchange interaction mediated by the free carriers. In Sn1-xMnxTe density of carriers 
depends on number of cation vacancies (one Sn vacancy produces 2 charge carriers – holes).   

 The band structure of the compound is of great importance due to presence of the second valence band located along Σ – 
line in the Brillouin Zone, characterized by much higher effective masses of the carriers than in the main valence band at L 
point. When the Fermi level enters the band of the heavy holes (pc = 3 x 1020 cm-3) the strength of the interaction becomes 
strongly enhanced thus inducing ferromagnetic state.  
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 The role of carriers in the RKKY exchange interaction is presented for two samples with equal Mn content:  
 Sample #45 with carrier concentration p = 1 x 1021 cm-3 – ferromagnetic state with Curie temperature TC = 8 K 
 Sample #38 with carrier concentration p = 2 x 1020 cm-3 – paramagnetic state described by Curie – Weiss law  

  

Conculsions - Magnetic phase diagram 
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 M(H) measurements for exemplary samples corrected for the diamagnetic signal from substrate BaF2 
as determined experimentally at 300 K, where the paramagnetic contribution of the layer can be 
neglected.  

 All the samples exhibit a lower magnetization saturation than expected for fully saturated (T= 0 K) 
system with nominal content (confirmed by EDX) of Mn2+ ions with S = 5/2 (MS = N*5μB). Carrier 
concentration for all presented samples fit in the range 5 x 1020 cm-3 ≤ p ≤ 9 x 1020 cm-3.  

 The Curie temperature was estimated from the temperature dependence of the thermoremanent magnetization (TRM) at field H ≈ 0 Oe while warming the 
sample, after field cooling (FC) down to T = 2 K at magnetic field H = 0.1 – 1 kOe. Curie temperature is defined by the point where the TRM signal reaches zero.  

   Values of TC (TRM) obtained from SQUID are with good agreement with TC determined from temperature dependence of FMR signal. 

Magnetization saturation for epilayers on various substrates: 

FMR resonant field and linewitdth as a function of the direction of the external magnetic field 

Carrier – Induced Ferromagnetism in Sn1-xMnxTe epitaxial layers 

 The contributions to the magnetic anisotropy in the Sn1-xMnxTe 
epitaxial layers arise from: 
 
 Shape anisotropy (dipolar) 
 Single – ion crystalline anisotropy (cubic) 
 Single – ion crystalline anisotropy (tetragonal) 

 
The quantitative analysis of anisotropy constants is based on 
angular dependence of FMR resonant field.  
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Magnetization saturation for various x content: 

Curie Temperatures for various manganese content (x): 
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 Magnetization saturation increases with increasing Mn composition for layers grown on BaF2 substrates 
and it’s higher for epitaxial layers with smaller (x ≤ 0.04) manganese content.  

 The magnetic field dependence of the magnetization for few samples shows gradual increase of the 
magnetization even at higher fields.  
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 The carrier concentration dependence of the normalized Curie – Weiss temperature of Sn1-xMnxTe and Pb1-x-ySnyMnxTe bulk crystals (black 
points) and Sn1-xMnxTe epitaxial layers (blue – grown by V. Volobuev, orange – grown by A. Nadolny, green – grown by R. Adhikari and 
turquoise – grown by M. Zięba). The solid line (gray) is the result of theoretical calculations based on the RKKY interaction due to both the 
light (L-band) and the heavy (Σ-band) holes [1]. 

Geometry of the FMR 
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