## The geometry of $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}($ II $)$ complexes with chlorophenoxy herbicides determined by XAS and UV-Vis spectroscopies

Aleksandra Drzewiecka-Antonik ${ }^{1}$, Anna Wolska ${ }^{1}$, Paweł Rejmak ${ }^{1}$, Marcin T. Klepka ${ }^{1}$, Wiesława Ferenc ${ }^{2}$<br>${ }^{1}$ Institute of Physics, Polish Academy of Sciences, Warsaw, Poland; ${ }^{2}$ Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland

Molecular structure

## Introduction

*Chlorophenoxy herbicides persist about 1 month in soil and are highly soluble in water. Before they are degraded, they can react with elements present in soil and plant tissues;
*The uptake and translocation of metal ions as $\mathrm{Co}($ II $), \mathrm{Ni}($ II $)$ and $\mathrm{Cu}(\mathrm{II})$ are observed via 2,4-D and MCPA herbicides;
*Usually the studies of such connection are focused on the physicochemical properties, not on the structure;
*Complexes rarely crystalize and crystallization can change the structure:

- XAFS and UV-Vis spectroscopies work for the compounds in any form!


## Measurements

SHIMADZU UV-VIS
Spectrophotometer UV-2600Plus (our lab)

## $\mathrm{Co}(\mathrm{II})$ complexes with 2,4-D and MCPA

## $\mathrm{Cu}(\mathrm{II})$ complexes with 2,4-D and MCPA

Moduli and a real part of the FT EXAFS oscillations with the best fit


Six O atoms were found above $2 \AA \&$ two C atoms around $3 \AA$ from $\mathrm{Co}(\mathrm{II}) / \mathrm{Ni}(\mathrm{II})$ cations
Four O atoms below $2 \AA$ \& two or four C atoms were found for $\mathrm{Cu}(I I)$ with 2,4-D and MCPA, respectively


Solid state UV-Vis spectra of the ligand and the complexes



XANES spectra for optimized the models vs. experimental data



Two coordination modes of the ligands


