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MOTIVATION & AIM

• Hole-spins are viable qubits because of their long coherence times and fast manipulation due to their strong
spin-orbit coupling.
However, usually static magnetic field are required to define the qubits→ Activates relaxation channels.

The non-abelian structure of the the hole-spin states allow only electrical manipulation and also entangle-
ment in single-mode cavity [1].

• How is the non-abelian Berry phase imprinted and transmitted in general environments?

Wave-guide quantum electrodynamics (QED) (artificial) atoms + coupling to a one-dimensional supercon-
ducting transmission line (bath) is a suitable candidate for this study [2].

• Simplest non-Abelian system: hole-spin qubits immersed in a waveguide cavity (photonic bath).

                                     

• Driven spin + wave-guide→ open system→ Born-Markov approximation + Floquet Theory

• Investigate the dynamical variables-the dressed spin trajectories, their coherence times, and the photons-
mediated entanglement between distant hole-spins [3].

• Input-output theory of EM field→ we calculate the photonic fluxes exiting the wave-guide and show that
its transmission depends on the Berry phases stemming from the driven hole spins [3].

DRIVEN 3/2 HOLE-SPIN HAMILTONIAN IN A CONTINUOUS MODE WAVE-GUIDE

Htot(t) = εE(t) · Γ +Hbath + g (Θ + Θ†)Γ1
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spin operators, a†L(R)(ω) is the photon creation operator moving left (right) with frequency ω.

FLOQUET THEORY FOR AN ELECTRICALLY DRIVEN HOLE-SPIN IN WAVE-GUIDE

• For periodic drivings, H(t + T ) = H(t), the solutions of i∂t|Ψ(t)〉 = H(t)|Ψ(t)〉 can be written as |Ψn(t)〉 =
e−iεnt|φn(t)〉, with εn and |φn(t+ T )〉 = |φn(t)〉 being the Floquet quasienergy and state, respectively.

• Reduced density matrix of the driven spin→ Born-Markov approximation + Floquet theory

• Usual rotating-wave approximation (RWA) may not be justified for describing degenerate levels!

• Universal Lindblad Equation (ULE) for open system [4] =⇒ No RWA invoked, while preserving the posi-
tivity of the density matrix

ULE→ Reduced density matrix element of the driven spin (ρmn) using the periodic Floquet states as basis:

ρ̇mn = −i(εm − εn)ρmn +Dmn[ρ] ,
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where Lmnz = (Ω/2π)
∫ 2π/Ω

0
〈φm(t)|Γ1|φn(t)〉 eiΩ z tg11(εn − εm + zΩ), g11(ω) is the bath correlation function,

{z, z′} = 0,±1, . . . and {p, q} ∈ {1, 2, 3, 4}. In the adiabatic limit, we can write: εi ∼ εstatici + γBi /T + . . . =⇒ the
Berry phase responsible for the degenerate levels dynamics.

In the stationary regime ρnm(t+ T ) = ρnm(t), allowing to find the spin dynamics:
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ϵ=3 , Ω=2, θ=30°, β=0.1, g=0.03

Plots for circular drive with E(t) = {− sin θ sin(Ω t), sin θ cos(Ω t), cos θ} using RWA. (Left) The driving causes the pre-
cession of the spin expectation values. (Right) The decay time of the population can be determined for gate operations.

CONCLUSION & FUTURE PLANS

• To capture the complete dynamics, we propose to use Universal Lindblad Equation [4] where master equa-
tion is in Lindblad form without any restriction on the system.

• Photon dynamics: 〈 ˙̂aR(L)(ω)〉 = −iω 〈âR(L)(ω)〉+ g
√
ω 〈Γ1(ω)〉 =⇒ Find the Berry-phase imprints

• Extend to two hole-spins to study the dissipative entanglement induced by the Berry phases

• Generalize for arbitrary non-abelian system
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