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MOTIVATION & AIM FLOQUET THEORY FOR AN ELECTRICALLY DRIVEN HOLE-SPIN IN WAVE-GUIDE

e Hole-spins are viable qubits because of their long coherence times and fast manipulation due to their strong
spin-orbit coupling.
However, usually static magnetic field are required to define the qubits — Activates relaxation channels.

e For periodic drivings, H(t + 1) = H(t), the solutions of i0;|W(t)) = H(t)|V(t)) can be written as |V, (1)) =
e "t|p, (1)), with €, and |¢,,(t + T)) = |, (t)) being the Floquet quasienergy and state, respectively.

The non-abelian structure of the the hole-spin states allow only electrical manipulation and also entangle- * Reduced density matrix of the driven spin — Born-Markov approximation + Floquet theory

ment in single-mode cavity [1]. e Usual rotating-wave approximation (RWA) may not be justified for describing degenerate levels!
* How is the non-abelian Berry phase imprinted and transmitted in general environments? e Universal Lindblad Equation (ULE) for open system [4] = No RWA invoked, while preserving the posi-
Wave-guide quantum electrodynamics (QED) (artificial) atoms + coupling to a one-dimensional supercon- tivity of the density matrix

ducting transmission line (bath) is a suitable candidate for this study [2]. . . . . . o .
ULE — Reduced density matrix element of the driven spin (p,,,,) using the periodic Floquet states as basis:

e Simplest non-Abelian system: hole-spin qubits immersed in a waveguide cavity (photonic bath). Pmn = —(€m — €n) Pmn + Dmn|p]
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where L., = (Q/2n) OQW/ (O[T b0 (1)) €22t g11 (60 — €m + 2), g11(w) is the bath correlation function,

{2,2'}=0,%1,... and {p, ¢} € {1,2,3,4}. In the adiabatic limit, we can write: ¢; ~ €%9"¢ + 4B /T + .. = the
Berry phase responsible for the degenerate levels dynamics.
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In the stationary regime p,,, (t + 1) = ppm(t), allowing to find the spin dynamics:

Stationary regime €=3 , 0=2, 6=30°, B=0.1, g=0.03
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Plots for circular drive with E(t) = {—sinfsin({2t),sinf cos(€2t), cos 0} using RWA. (Left) The driving causes the pre-

* Driven spin +wave-guide — open system — Born-Markov approximation + Floquet Theory cession of the spin expectation values. (Right) The decay time of the population can be determined for gate operations.

* Investigate the dynamical variables-the dressed spin trajectories, their coherence times, and the photons-
mediated entanglement between distant hole-spins [3].

CONCLUSION & FUTURE PLANS

* To capture the complete dynamics, we propose to use Universal Lindblad Equation [4] where master equa-
tion is in Lindblad form without any restriction on the system.

e Input-output theory of EM field — we calculate the photonic fluxes exiting the wave-guide and show that
its transmission depends on the Berry phases stemming from the driven hole spins [3].
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e Photon dynamics: (G r(p)(w)) = —iw (A (w)) + g vw (' (w)) = Find the Berry-phase imprints

DRIVEN 3/2 HOLE-SPIN HAMILTONIAN IN A CONTINUOUS MODE WAVE-GUIDE

e Extend to two hole-spins to study the dissipative entanglement induced by the Berry phases

* Generalize for arbitrary non-abelian system
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(w) is the photon creation operator moving left (right) with frequency w.
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