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IV-VI semiconductor pentagonal nanowires

IV-VI compounds are categorized as a narrow bandgap  Pentagonal modeled structure 3D & 1D Brillouin zone
semiconductors.  In particular, SnTe has inverted band (a) (b)
gap and 1s 1dentified as a topological crystalline insula-

tor (TCls). The band gap occurs in four non-equivalent &
high symmetry L points in the reciprocal space [1]. Five-

fold NWs have been recently grown and demonstrated

by transmission electron microscopic measurement [2]. Lal

e The NWs are grown along [011] direction

e They have five {111} twin plane (TP) boundaries; either ex- (c) - (e) = S
clusively cationic or anionic - ol [Ui !
* Five {100} free surfaces B . * Perspective of one triangle of pentagonal NW (Fig. a)
* NWs have inherent circumferential strain ( by the angle 1.47°) : 1 — oy » The band gaps are placed in two distinct I' and Z points in
e topological phase remains unchanged due to this strain < . ~ 1DBZ
* The gap changes are less than 10% respect to unstrained bulk Diameter * IDBZ is the same for each triangle of NW

crystal for SnTe and less than 20% for Pbg ¢Sng 4Se

Tight-binding band structure of pentagonal nanowires Low-energy theory of the core and hinge states
Band structure calculations have been performed using simplified tight-binding (TB) pa- The k.p Hamiltonian can be written as 100
rameterization with p orbitals for SnTe and realistic sp’d® parameterization for (Pb,Sn)Se A o —
[3]. The bulk band gaps are —0.33 eV for SnTe and —0.19 eV for PbgSng4Se. Hy(k.) = ey + SA o CTUAR: (1) |
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Left: (a) Electronic structure for SnTe pentagonal NW with cationic TPs. Observation of topological CS Method:

and topological SSs obtained for 14 nm (20 rings). (b—d) Spatial distribution of localized CS (at p1), hybridized . . . . .
hinge states (at p) and conventional TCI SSs (at p3) presented by sum of the squared moduli of the wave functions, * topological mvariant calculations - mirror 2m
respectively. Chern number C,,, and Z,

e surface spectral Green’s functions
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2. — Figure: The (101) surface spectrum calculated for d = 16 mono- 18 - 3
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Electronic structure for Pbg Sng 4Se pentagonal NW. Upper row: Topological CS is presented in cationic TPs.
Due to confinement effect the CS hybridizes with SSs and open the gap (a,b). Lower row: Panels (e)-(f) represent
the anti-crossing triv. CS for anionic TP NWs.

In C5-symmetric NW, the Dirac point exists only in C5 = —1 subspace when the five TPs di-
viding the NW segments are cationic. However, exact crystalline symmetry 1s not necessary for
the crossing to emerge. The Dirac point still persists even after C’; is weakly broken, because

Hinge states In a pentagonal ©ANAYR topological CS or topological hinge states are protected by time-reversal symmetry.

o T OTE E * imposing perturbation to the atoms where The core and hinge topological states can be interpreted as hybridized edge states of five twin
e i ol B 5 located at the faces of pentagonal wire boundaries which effectively act as quantum spin Hall insulators.

e breaking all relevant mirror symmetries
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Left: Cationic TPs, one topological CS (red) and
five topological hinge states. Right: Anionic TPs, no
Dirac crossings become visible.
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