Fock State Sampling Method for BEC Fluctuations

M. B. Kruk^{1,2}, K. Pawłowski¹, D. Hryniuk¹, K. Rzążewski¹

¹Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland ²Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

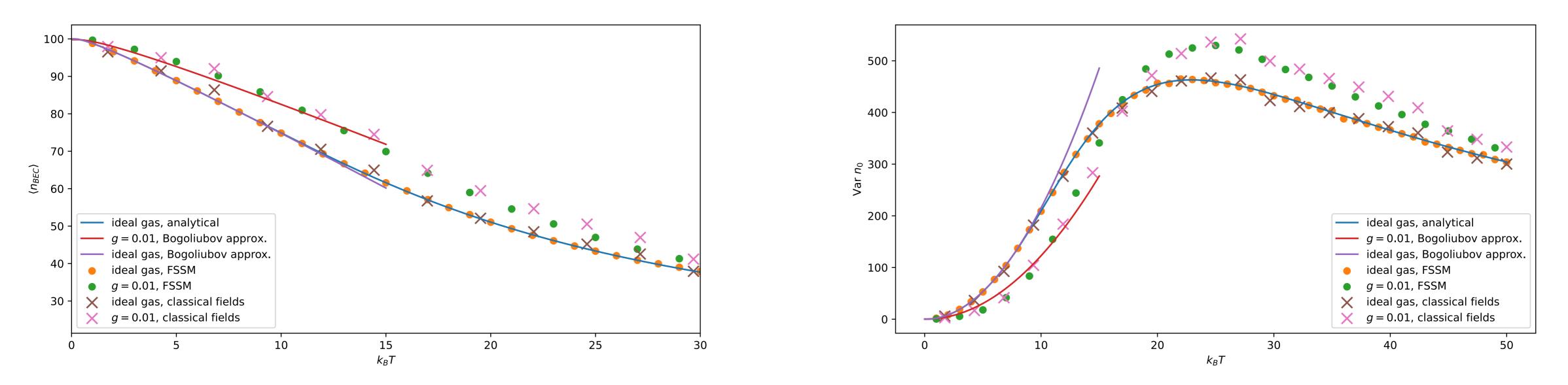


Figure 1: Condensate average occupation and fluctuations in the canonical ensemble, in a 1D box with periodic boundary conditions: comparison of the FSSM to exact (ideal gas) and classical field [1]

and Bogoliubov results with interaction g > 0. g = 0.01 is in natural $\hbar = m = L = 1$ units with box size L and resultant energy units of $\hbar^2/(mL^2)$.

The method

Fock State Sampling Method (FSSM) is a new method for calculating BEC fluctuations developed by our group, which was already put to the test in [2]. It is essentially a Metropolis algorithm

that samples multimode Fock state configurations in a chosen statistical ensemble, with an innova- which allows for efficient computation of ΔE once the overlaps h_{ij} have been pre-computed. tive update rule that deals efficiently with the high energy tails.

(1)

To understand how it works, first consider an ideal gas Hamiltonian (harmonic, ring trap, etc.) \mathcal{H}_0 and a multimode Fock state $|\phi\rangle = |n_0, n_1, n_2, ...\rangle$, with energy E_{ϕ} and n_i being the number of **2** particles in mode j. All modes are assumed orthogonal.

FSSM can be described shortly by the following:

0 select initial state
$$\phi$$
,
1 pick a slightly modified candidate ϕ' ,
2 calculate $\Delta E = E_{\phi'} - E_{\phi}$,
3 calculate $\alpha = \exp \frac{\Delta E}{kT}$,
4 set $\phi \leftarrow \phi'$ if $\alpha \leq r \in [0, 1)$,
5 go to point 1,

where r is a uniform random number. The innovative part in our method is the update rule which determines how we pick the candidate $\phi' = (n_0, n_1, n_2, ...)$. Let $p_A(\phi, i)$ be the probability of moving particle from mode i and $p_B(\phi, j)$ be the probability of moving particle to mode j. Motivated by the Bose enhancement phenomenon we set

$$p_A(i) \propto n_i, \ p_B(j) \propto n_j + 1.$$

For the canonical ensemble the total number of particles is fixed, so for every particle we take from trap. one mode we need to put it somewhere else, thus we get the total probability of taking a particle from mode i and putting it in mode j

$$p(\phi, i \rightarrow j) = p_A(\phi, i)p_B(\phi, j)$$

The energy approximation E can be expanded using mode occupation numbers n_i to

$$E = \sum_{i} E_{i} n_{i} + \frac{g}{2} \sum_{i} h_{ii} (n_{i} - 1) n_{i} + 2g \sum_{i < j} h_{ij} n_{i} n_{j}.$$
 (2)

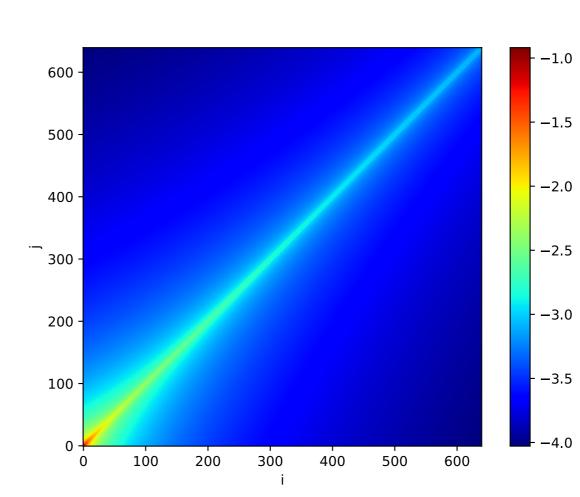
Interaction quadratic form

Grouping terms in the expression (2) for the energy gives us

$$E = \sum_{i} (E_i - \frac{gh_{ii}}{2})n_i + g \sum_{i,j} \tilde{h}_{ij}n_i n_j,$$

where h is just h with rescaled diagonal by a factor of 2. With periodic boundary conditions $h_{ij} = 0, 1$ and the interaction energy can be computed fast, however for the harmonic potential case, it is not so easy. Naive, brute force computing of the interaction energy is of complexity $O(m^2)$, where m is the number of occupied modes. We need a better approach. Figure 2 illustrates h_{ij} for the harmonic trap case: it is a Figure 2: Log plot of h_{ij} matrix for a harmonic real, symmetric (but not positive definite!) matrix that we can diagonalize. The idea is to perform "naive" interaction energy calculation but

this time, we limit our computations to the "most important" part of the eigenspace. Our preliminary result show that eigensubspace built with about 10^D (D=number of dimensions) eigenvectors



for a candidate

 $\phi' = (\dots, n_i - 1, \dots, n_j + 1, \dots).$

The simple product of probabilities implies that the choice of i and j is statistically independent. 3 $p(\phi, i \rightarrow j)$ is a proposal distribution in a sense of a Metropolis algorithm. The Bose-enhanced update rule dramatically increases the efficiency of updates for the highly occupied modes while leaving updates in the tails at a physically sensible rate.

In the interacting case with general hamiltonian

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + rac{g}{2} \int \hat{\Psi}(x)^\dagger \hat{\Psi}(x)^\dagger \hat{\Psi}(x) \hat{\Psi}(x) \mathrm{d}x,$$

where $\Psi(x) = \Sigma_i \psi_i(x) \hat{a}_i$ are the field operators constructed from annihilation operators \hat{a}_i and the corresponding $\psi_i(x)$ single particle eigenfunctions ("orbitals") of the non-interacting Hamiltonian $\mathcal{H}_0, \psi_i(x)$ form an orthonormal basis on the underlying single particle Hilbert space. To compute the candidate's energy the following perturbative approximation is used:

$$E = \langle \phi | \hat{\mathcal{H}} | \phi \rangle,$$

where ϕ are the eigenstates of $\hat{\mathcal{H}}_0$, that is

$$\hat{\mathcal{H}}_0 |\phi\rangle = E_\phi |\phi\rangle = (\sum_i E_i n_i) |\phi\rangle.$$

References

[1] M. Kruk, M. Łebek, and K. Rzążewski, "Statistical properties of cold bosons in a ring trap", Phys. Rev. A 101, 023622 (2020).

[2] M. B. Christensen, T. Vibel, A. J. Hilliard, M. B. Kruk, K. Pawłowski, D. Hryniuk, K. Rzążewski, M. A. Kristensen, and J. J. Arlt, "Observation of microcanonical atom number fluctuations in a bose-einstein condensate", Phys. Rev. Lett. **126**, 153601 (2021).

is sufficient for accuracy above 99% in calculating the interaction energy.

Microcanonical ensemble

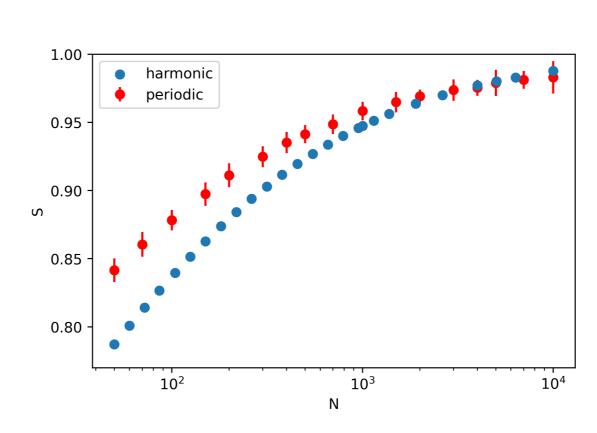


Figure 3: S is the ratio of maximal BEC fluctu- plain C. Parallelisation of our code is trivial: we ations, microcanonical to canonical, for a given run multiple independent simulations. Code will number of particles N. be publicly available under a permissive or copyleft license.

With the additional step of postprocessig, FSSM is able to access statistics of the microcanonical ensemble for both ideal and interacting gases.

The implementation 4

The implementation of FSSM consists of the main simulation program and several helper scripts and programs to analyze and plot data. Computation intensive simulation is written in