Fock State Sampling Method for BEC Fluctuations

M. B. Kruk™, K. Pawlowski', D. Hryniuk', K. Rzazewski'

LCenter for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikéw 32/46, 02-668 Warsaw, Poland
2 Institute of Physics, Polish Academy of Sciences, Aleja Lotnikéw 32/46, 02-668 Warsaw, Poland

100 A
ox® ' o
e 500 - o o .
90 A ‘ @ X ® 4
L/
X . ¢ .
80 400 A N )
. - .
o
70 - X o v, ‘ ()
o ) v S 300 1
m —
¢ 200 1
50 4 — ideal gas, analytical [ —— ideal gas, analytical
—— g =0.01, Bogoliubov approx. g —— g =0.01, Bogoliubov approx.
—— ideal gas, Bogoliubov approx. S —— ideal gas, Bogoliubov approx.
40 1 ideal gas, FSSM 100 A R /4 ideal gas, FSSM
® 9=0.01, FSSM ® g9=0.01, FSSM

309 X ideal gas, classical fields e ] X ideal gas, classical fields

g =0.01, classical fields 0 - > g =0.01, classical fields

0 5 10 15 20 25 30 0 10 20 30 40 50
kgT kgT

Figure 1: Condensate average occupation and fluctuations in the canonical ensemble, in a 1D box with periodic boundary conditions: comparison of the FSSM to exact (ideal gas) and classical field [1],
and Bogoliubov results with interaction g > 0. ¢ = 0.01 is in natural A = m = L = 1 units with box size L and resultant energy units of h*/(mL?).

1 The method The energy approximation £ can be expanded using mode occupation numbers n; to
Fock State Sampling Method (FSSM) is a new method for calculating BEC fluctuations devel- b= %Em@ -+ g;hm(m — 1)n; + 2g¢ Ej hijnin;. (2)

oped by our group, which was already put to the test in [2]. It is essentially a Metropolis algorithm
that samples multimode Fock state configurations in a chosen statistical ensemble, with an innova- which allows for efficient computation of AE once the overlaps h; ; have been pre-computed.
tive update rule that deals efficiently with the high energy tails.

To understand how it works, first consider an ideal gas Hamiltonian (harmonic, ring trap, etc.) . .
H, and a multimode Fock state |¢) = |ng, ni, no, ...), with energy E, and n; being the number of 2 Interaction quadratlc form

particles in mode j. All modes are assumed orthogonal.

FSSM can be described shortly by the following: GFOUpng terms in the expression (2) for the
| energy gives us

0 select initial state ¢, 600 o

1 pick a slightly modified candidate ¢’, s _ ghii -

2 caleulate AE = Ey — B, B =x(E; — =) + g & hinin;.

3 calculate a = exp %}E? 200 2.0 )

4 set g ¢ ifa<<re|01]), where h is just h with rescaled diagonal by a

5 go to point 1, "~ 300 25 factor of 2. With periodic boundary conditions

, , _ , , , _ hi; = 0,1 and the interaction energy can be com-

where r is a uniform random number. The innovative part in our method is the update rule which 200 F 3.0

puted fast, however for the harmonic potential
s case, it is not so easy. Naive, brute force com-
puting of the interaction energy is of complex-
-0 ity O(m?), where m is the number of occupied

determines how we pick the candidate ¢’ = (ng, ny, no, ...). Let pa(¢, i) be the probability of moving
particle from mode ¢ and pp(¢, 7) be the probability of moving particle to mode j. Motivated by
the Bose enhancement phenomenon we set
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pali) o ni, pplj) o< n; + 1. (1) | modes. We need a better approach. Flgurg 2 il-

Figure 2: Log plot of hy; matrix for a harmonic lustrates h;; for the harmonic trap case: it is a

For the canonical ensemble the total number of particles is fixed, so for every particle we take from trap. real, symmetric (but not positive definite!) ma-
one mode we need to put it somewhere else, thus we get the total probability of taking a particle trix that we can diagonalize. The 1dea 1s to per-
from mode ¢ and putting it in mode 3 form "naive” interaction energy calculation but
this time, we limit our computations to the "most important” part of the eigenspace. Our prelimi-

p(¢,t — j) = pal¢,i)pp(o, j) nary result show that eigensubspace built with about 10 (D=number of dimensions) eigenvectors

for a candidate is sufficient for accuracy above 99% in calculating the interaction energy.

¢ =(.,ni— 1, n;+1,..).

The simple product of probabilities implies that the choice of ¢ and j is statistically independent. 3 Microcanonical ensemble

p(¢,7 — j) is a proposal distribution in a sense of a Metropolis algorithm. The Bose-enhanced

update rule dramatically increases the efficiency of updates for the highly occupied modes while With the additional step of postprocessig,

FSSM is able to access statistics of the micro-

leaving updates in the tails at a physically sensible rate. Rl I —— : . _ _ .
In the interacting case with general hamiltonian ¢ periodic so ot ? ¢ canonical ensemble for both ideal and interacting
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where V(z) = v;¢;(x)a; are the field operators constructed from annihilation operators a; and the oss] 4 4 The 1mplementat10n
. : : . . " . ’ . : : : o
corresponding Yi(x) single particle .elgenfunctlons ( .orblt.als ) of the Lon interacting Hamiltonian K The implementation of FSSM consists of the
Ho, ¥;(x) form an orthonormal basis on the underlying single particle Hilbert space. 080{ ® . .
To compute the candidate’s energy the following perturbative approximation is used: ) main simulation program and several helper
' e e 1o scripts and programs to analyze and plot data.
F — <gb\7:[\ ¢, " Computation intensive simulation is written in
X Figure 3: 5 is the ratio of maximal BEC fluctu- plain C. Parallelisation of our code is trivial: we
where ¢ are the eigenstates of ‘Hj, that is ations, microcanonical to canonical, for a given run multiple independent simulations. Code will
. number of particles V. be publicly available under a permissive or copy-
Hol@) = Es|o) = @ Eini)|¢). left license.
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