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Figure 1: Condensate average occupation and fluctuations in the canonical ensemble, in a 1D box with periodic boundary conditions: comparison of the FSSM to exact (ideal gas) and classical field [1],
and Bogoliubov results with interaction g > 0. g = 0.01 is in natural h̄ = m = L = 1 units with box size L and resultant energy units of h̄2/(mL2).

1 The method

Fock State Sampling Method (FSSM) is a new method for calculating BEC fluctuations devel-
oped by our group, which was already put to the test in [2]. It is essentially a Metropolis algorithm
that samples multimode Fock state configurations in a chosen statistical ensemble, with an innova-
tive update rule that deals efficiently with the high energy tails.

To understand how it works, first consider an ideal gas Hamiltonian (harmonic, ring trap, etc.)
Ĥ0 and a multimode Fock state |φ〉 = |n0, n1, n2, ...〉, with energy Eφ and ni being the number of
particles in mode j. All modes are assumed orthogonal.

FSSM can be described shortly by the following:

0 select initial state φ,
1 pick a slightly modified candidate φ′,
2 calculate ∆E = Eφ′ − Eφ,
3 calculate α = exp ∆E

kT ,
4 set φ ← φ′ if α ¬ r ∈ [0, 1),
5 go to point 1,

where r is a uniform random number. The innovative part in our method is the update rule which
determines how we pick the candidate φ′ = (n0, n1, n2, ...). Let pA(φ, i) be the probability of moving
particle from mode i and pB(φ, j) be the probability of moving particle to mode j. Motivated by
the Bose enhancement phenomenon we set

pA(i) ∝ ni, pB(j) ∝ nj + 1. (1)

For the canonical ensemble the total number of particles is fixed, so for every particle we take from
one mode we need to put it somewhere else, thus we get the total probability of taking a particle
from mode i and putting it in mode j

p(φ, i→ j) = pA(φ, i)pB(φ, j)

for a candidate
φ′ = (..., ni − 1, ..., nj + 1, ...).

The simple product of probabilities implies that the choice of i and j is statistically independent.
p(φ, i → j) is a proposal distribution in a sense of a Metropolis algorithm. The Bose-enhanced
update rule dramatically increases the efficiency of updates for the highly occupied modes while
leaving updates in the tails at a physically sensible rate.

In the interacting case with general hamiltonian

Ĥ = Ĥ0 +
g

2
∫

Ψ̂(x)†Ψ̂(x)†Ψ̂(x)Ψ̂(x)dx,

where Ψ̂(x) = ∑
iψi(x)âi are the field operators constructed from annihilation operators âi and the

corresponding ψi(x) single particle eigenfunctions (“orbitals”) of the non-interacting Hamiltonian
Ĥ0, ψi(x) form an orthonormal basis on the underlying single particle Hilbert space.

To compute the candidate’s energy the following perturbative approximation is used:

E = 〈φ|Ĥ|φ〉,

where φ are the eigenstates of Ĥ0, that is

Ĥ0|φ〉 = Eφ|φ〉 = (∑
i
Eini)|φ〉.

The energy approximation E can be expanded using mode occupation numbers ni to

E = ∑
i
Eini +

g

2
∑
i
hii(ni − 1)ni + 2g ∑

i<j
hijninj. (2)

which allows for efficient computation of ∆E once the overlaps hij have been pre-computed.

2 Interaction quadratic form

Figure 2: Log plot of hij matrix for a harmonic
trap.

Grouping terms in the expression (2) for the
energy gives us

E = ∑
i
(Ei −

ghii
2

)ni + g
∑
i,j
h̃ijninj,

where h̃ is just h with rescaled diagonal by a
factor of 2. With periodic boundary conditions
hij = 0, 1 and the interaction energy can be com-
puted fast, however for the harmonic potential
case, it is not so easy. Naive, brute force com-
puting of the interaction energy is of complex-
ity O(m2), where m is the number of occupied
modes. We need a better approach. Figure 2 il-
lustrates hij for the harmonic trap case: it is a
real, symmetric (but not positive definite!) ma-
trix that we can diagonalize. The idea is to per-
form ”naive” interaction energy calculation but

this time, we limit our computations to the ”most important” part of the eigenspace. Our prelimi-
nary result show that eigensubspace built with about 10D (D=number of dimensions) eigenvectors
is sufficient for accuracy above 99% in calculating the interaction energy.

3 Microcanonical ensemble

Figure 3: S is the ratio of maximal BEC fluctu-
ations, microcanonical to canonical, for a given
number of particles N .

With the additional step of postprocessig,
FSSM is able to access statistics of the micro-
canonical ensemble for both ideal and interacting
gases.

4 The implementation

The implementation of FSSM consists of the
main simulation program and several helper
scripts and programs to analyze and plot data.
Computation intensive simulation is written in
plain C. Parallelisation of our code is trivial: we
run multiple independent simulations. Code will
be publicly available under a permissive or copy-
left license.
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