Luminescence and energy transfer processes in LuNbO₄:Bi,Eu

V. Tsiumra^{1,2}, M. Baran³, A. Kissabekova^{4,5}, A. Krasnikov⁴, A. Lushchik⁴, Ya. Zhydachevskyy^{1,6}, L. Vasylechko⁶, S. Zazubovich⁴

¹Institute of Physics, Polish AS, AI. Lotników 32/46, 02-668 Warsaw, Poland ² Ivan Franko National University of Lviv, Kyryla and Mefodiya 8a, Lviv 79005, Ukraine ³Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland ⁴Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia ⁵L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan ⁶Lviv Polytechnic National University, Bandera 12, 79013 Lviv, Ukraine

0%

2%

4%

8%

0%

2%

4%

8%

250

300

Motivation and aim of the work

The interest in Bi³⁺-doped compounds increased drastically in recent years due to their possible applications as scintillator and phosphor materials suitable for X-ray screens, white light-emitting diodes, solar cells, dosimeters, etc. The compounds co-doped with Bi³⁺ and different trivalent rare-earth (RE³⁺) ions were found to be potentially applicable as spectral converters for solar cells and solid-state light sources of new generation, socalled white light-emitting diodes (WLED), owing to strong absorption in the ultraviolet spectral region, intense broad visible Bi³⁺-related emission bands, and effective Bi³⁺ \rightarrow RE³⁺ energy transfer, resulting in the appearance of the luminescence covering a wide spectral range from blue to red.

Recently, a detailed and systematic investigation of the Bi3+-related luminescence in YNbO₄:Bi, LuNbO₄:Bi, and GdNbO₄:Bi microcrystalline powders with different Bi³⁺ contents was carried out [1]. Two broad visible Bi³⁺-related emission bands were observed in the emission spectrum of the Bi3+-doped niobates. The analysis of temperature dependences of their decay time and the values of the corresponding relaxed excited states (RES) parameters allowed us to conclude their exciton-like origin. The absence of the ultraviolet emission, arising from the radiative decay of the triplet RES of a Bi³⁺ ion, and the exciton-like origin of the visible Bi³⁺-related emissions indicate that the triplet RES of both the Bi³⁺ ion and the {Bi³⁺–Bi³⁺} dimer are located inside the conduction band of the investigated niobates.

Experimental results

Emission (red lines) and excitation (black lines) spectra of (a) LuNbO₄, (b) LuNbO₄:Bi, and (c) LuNbO₄:Bi,Eu measured at 79 K. In the inset the 1.76 eV emission of Eu³⁺ measured under excitation in the absorption bands of Bi^{3+} ($E_{exc} = 3.95$ eV, solid line) and Eu^{3+} ($E_{exc} = 2.36$ eV, dashed line).

Emission spectra of LuNbO₄:Bi, Eu measured at 79 K for the samples with different nominal Eu³⁺ concentrations. (a) $E_{exc} = 4.96 \text{ eV}$, (b) $E_{exc} = 3.96$ eV, (c) $E_{exc} = 3.65 eV$.

Dependences on the nominal Eu³⁺ concentration measured for (a,b,c) the maximum intensity of the intrinsic (black circles), Bi³⁺-related (blue circles) and Eu³⁺ (red circles) emissions of LuNbO₄:Bi,Eu. Dependences of the energy transfer efficiency (ETE) on the nominal Eu³⁺ concentration measured for the STE \rightarrow Eu³⁺ (green solid line), ex⁰Bi³⁺ \rightarrow Eu³⁺ (green dashed line) and $ex^{0}{Bi^{3+} - Bi^{3+}} \rightarrow Eu^{3+}$ energy transfer in LuNbO₄:Bi,Eu. T = 79 K.

The values of color rendering indexes (CRI), quantum yields (QY), $Bi^{3+} \rightarrow Eu^{3+}$ energy transfer efficiences (ETE), correlated color temperatures (CCT) and CIE chromaticity coordinates (x,y) obtained for the investigated LuNbO₄:Bi, Eu samples with different nominal Eu³⁺ concentrations.

Eu ³⁺ (%)	QY, %	ETE, %	CRI, %	CIE, x;y	CTT, K
0.2	18.8 ± 0.7	-	90	0.254, 0.296	9511
0.4	17.9 ± 0.6	-	76	0.316, 0.317	5206
1	25.1 ± 0.7	-	58	0.375, 0.318	2874
2	26.2 ± 0.6	32	53	0.501, 0.339	1529
4	29.1 ± 2.0	47	45	0.539, 0.340	1237
5	41.9 ± 2.1	60	35	0.608, 0.341	1091

Conclusion

In LuNbO₄:Bi,Eu, sample obtained results indicate the presence of energy transfer from the intrinsic and Bi³⁺-related centers to Eu³⁺ ions by the non-radiative (resonance) energy transfer process.

The values of a color rendering index (CRI) of 76%, quantum efficiency of ≈18%, and correlated color temperature (CCT) of 5206 K are achieved for the LuNbO₄:2% Bi³⁺,0.4 % Eu³⁺ powder with the best CIE chromaticity coordinates (x = 0.316, y = 0.317).

References

1) M. Baran, K. N. Belikov, A. Kissabekova, A. Krasnikov, A. Lushchik, E. Mihokova, V. Tsiumra, L. Vasylechko, S. Zazubovich, Ya. Zhydachevskyy, J. Alloys and Compounds 859, 157800.