Structural, optical and magnetic properties of $Y_{3-0.02-x}Er_{0.02}Yb_xAl_5O_{12}$ (0<x<0.20) nanocrystals: effect of Yb content

Izabela Kamińska¹, Dawid Jankowski², Bożena Sikora¹, Przemysław Kowalik¹, Roman Minikayev¹, Tomasz Wojciechowski^{1,3}, Michał Chojnacki¹, Kamil Sobczak⁴, Jarosław Rybusiński⁵, Jacek Szczytko⁵, Karolina Zajdel⁶, Andrzej Suchocki^{1,7}, Wojciech Paszkowicz¹, Małgorzata Frontczak-Baniewicz⁶ and Krzysztof Fronc¹

> ¹Institute of Physics Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland ²Research Foundation Baltic Institute of Technology, al. Zwycięstwa 96/98, 81-451 Gdynia, Poland ³International Research Centre MagTop, al. Lotników 32/46, Warsaw 02-668, Poland ⁴University of Warsaw Biological and Chemical Research Centre, Żwirki i Wigury 101, Warsaw 02-089, Poland ⁵Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland ⁶Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, Warsaw 02-106, Poland ⁷ Institute of Physics, Kazimierz Wielki University, Weyssenhoffa 11, 85-072, Bydgoszcz, Poland emial: ikaminska@ifpan.edu.pl

INTRODUCTION

The paramagnetic $Y_{3-0.02-x}Er_{0.02}Yb_{x}Al_{5}O_{12}$ (x = 0.02, 0.06, 0.10, 0.12, 0.18, 0.20) nanocrystals (NCs) were synthesized by the microwave-induced solution combustion method. The XRD, TEM and SEM techniques were applied to determine the NCs' structures and sizes. The XRD patterns confirmed that the NCs have for the most part a regular structure of the Y₃Al₅O12 (YAG) phase. The changes of the distance between donor Yb³⁺ (sensitizer) and acceptor Er³⁺ (activator) were realized by changing the donor's concentration with a constant amount of acceptor. Under 980 nm excitation, at room temperature, the NCs exhibited strong red emission near 660 and 675 nm, and green upconversion emission at 550 nm, corresponding to the intra 4f transitions of $Er^{3+}({}^{4}F_{9/2}, {}^{2}H_{11/2}, {}^{4}S_{3/2}) \rightarrow Er^{3+}({}^{4}I_{15/2})$. The strongest emission was observed in a sample containing 18% Yb³⁺ ions. The red and green emission intensities are respectively about 5 and 12 times higher as compared to NCs doped with 2% of Yb³⁺. In order to prove that the main factor responsible for the increase of the upconversion luminescence efficiency is reduction of the distance between Yb³⁺ and Er³⁺, we examined, for the first time the influence of hydrostatic pressure on luminescence and luminescence decay time of the radiative transitions inside donor ion. The decrease of both luminescence intensity and luminescence decay times, with increasing hydrostatic pressure was observed. After applying hydrostatic pressure to samples with e.g. 2% and 6% Yb³⁺, the distance between the donor and acceptor decreases. However, for higher concentrations of the donor, this distance is smaller, and this leads to the effective energy transfer to Er³⁺ ions. With increasing pressure, the maximum intensity of near infrared emission is observed at 1029, 1038 and 1047 nm, what corresponds to ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition of Yb³⁺ [1].

[1] I. Kamińska, D. Jankowski, B. Sikora, P. Kowalik, R. Minikayev, T. Wojciechowski, M. Chojnacki, K.Sobczak, J. Rybusiński, J. Szczytko, K. Zajdel, A. Suchocki, W. Paszkowicz, M. Frontczak-Baniewicz, K. Fronc, Structural, optical and magnetic properties of Y_{3-0.02-x} Er_{0.02}Yb_xAl₅ O₁₂ (0<x<0.20) nanocrystals: effect of Yb content, Nanotechnology 31 (2020) 225711 (14pp).

PHOTOLUMINESCENCE OF NPs SUSPENDED IN DMSO AND POWDER FORM

Combustion synthesis in a microwave oven over time: 32s, 34s, 44s.

YAIO (P63/mmc) - hexagonal

50000 - IF10

25000

The SEM images of $Y_{3-0.02-x}Er_{0.02}Yb_xAl_5O_{12}$ (x = 0.02, 0.06, 0.10, 0.12, 0.18, 0.20) with different concentration of Yb^{3+} ions: a) 2% (IF5) b) 6% (IF6) c) 10% (IF7) d) 12% (IF8) e) 18% (IF9) f) 20% (IF10).

(a) Upconversion luminescence spectra of $Y_{3-0.02-x}Er_{0.02}Yb_xAl_5O_{12}$, x = 0.20 (IF10) NCs in the DMSO solution as a function of the power densities. Insets: (b-c) Green-emitting UCNCs in DMSO solution when excited with a 980 nm diode laser (CW) (laser power density ~1.3 W·cm⁻²). The concentration of the NCs was 2 mg⋅ml⁻¹.

STEM images (a) in bright field and (b) in HAADF of $Y_{3-0.02-x}Er_{0.02}Yb_{x}Al_{5}O_{12}$, x = 0.20 (IF10) NCs. The element mappings of (c) AI and Y (d) O and Y (e) Er (f) Yb and (g) AI of the NCs. (h) Confirmed presence of Er³⁺ and Yb³⁺ ions in

MAGNETIC PROPERTIES OF $Y_{3-0.02-x} Er_{0.02}Yb_{x}Al_{5}O_{12}$ (0<x<0.20) NCs

 Y₃Al₅O₁₂ matrix Er³⁺ ions Yb³⁺ ions 	Higher average distance between Er ³⁺ and nearest Yb ³⁺ ions Lower average distance between Er ³⁺ and nearest Yb ³⁺ ions

The effect of increasing the Yb³⁺ concentration on the reduction of the average distance between Er³⁺ and Yb³⁺ ions.

NO PRESSURE	HIGH HYDROSTATIC PRESSURE	
YAIO ₃ Er ³⁺ Yb ³⁺	 Higher average distance between Er³⁺ and Yb³⁺ions Lower average distance 	

The influence of the hydrostatic pressure on the average distance between Yb³⁺- Er³⁺ ions.