Copper doping of epitaxial Se-based quantum dots and quantum wells

<u>P. Wojnar¹</u>, M. Szymura¹, Ł. Kłopotowski¹, A. Rodek², T. Kazimierczuk², P. Kossacki², K. Fronc¹, S. Chusnutdinow¹, J. Kossut¹

1 Institute of Physics, Polish Academy of Sciences, Al Lotników 32/46, 02-668 Warsaw, Poland 2 Institute of Experimental Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland

Motivation:

Observation of a strong spin-exchange interaction between paramagnetic Cu²⁺ dopants and the band carriers in copperdoped chalcogenide nanocrystals (Pandey, A. et al., Nature Nanotechnology 2012, 7, 792) has given raise to explore diluted magnetic systems based on Cu²⁺ magnetic ions.

work, CdSe:Cu/ZnSe quantum dots In this (QDs) and (Zn,Cd)Se:Cu/ZnSe quantum wells (QWs) are grown by molecular beam epitaxy. The aim of our investigations is to identify Cu-related optical transitions and determine whether Cuions are in the magnetic +2 or non-magnetic +1 charge state

Figure 1 Schematics of the Cu related emission when Cu level lies within the energy gap. The conduction band (CB) electron recombines with the hole strongly localized on Cu⁺² ion.

e.g. Knowles KE at al. Chemical Rev. 116, 10820 (2016)

Figure 2. Normalized photoluminescence (PL) spectra from various samples containing (a) (Zn,Cd)Se:Cu QWs embedded in ZnSe and (b) CdSe:Cu/ZnSe QDs. Cu-concentration is controlled by Cu flux. The normalization factor is given for each spectrum, which indicates a significant quenching of the luminescence in the presence of copper. T = 5 K, excitation – 405nm

Magneto-Photoluminescence

Identificaton of Cu-related emission

Figure 3. Comparison of the optical emission from Cu-doped and undoped structures, which leads to the identification of Cu-related optical emission from (a) ZnCdSe:Cu quantum wells with Cu content of 0.2% and (b) CdSe:Cu/ZnSe quantum dots with Cu content of 0.3%. The arrows indicate the emission showing up in the presence of Cu dopants. T=5K, excitation with 405 nm and 474 nm laser for (a) and (b), respectively.

Figure 4. Correlation between the excitonic Cu-related emission and energy in (Cd,Zn)Se:Cu wells. quantum (a) normalized photoluminescence spectrum in Cu-related and excitonic emission from 3 with different wells Cu quantum concentrations (b) Cu-related emission energy plotted vs. excitonic emission energy for 7 different quantum wells with different Cu concentrations and quantum well widths. content is always 0.2. Solid line represent a linear fit with the slope of 1 showing that the spectral distance between these two energies is $\Delta E = 805 \text{ meV}$. T=5K, excitation 474 nm laser diode

Figure 5. Magneto-photoluminescence from (Zn,Cd)Se:Cu QW with Cu content of 0.2%. – left panel and CdSe:Cu/ZnSe QDs with Cu content 0.5% - right panel (a) Magnetic field dependence of circular polarization degree for Cu-related (blue rectangles) and excitonic emission (green triangles) and for a udoped reference sample (empty black rectangles) (b) Zeeman splitting of the excitonic emission for Cu doped (green triangles) and undoped (empty black rectangles) QWs and QDs. Inset: PL-spectra for the Cu-doped structures at 10 T in both circular polarizations. T = 2 K, excitation 405 nm laser line, excitation power 100 µW, magnetic field applied in Faraday configuration, perpendicular to the sample surface.

Summary

The results are published: P. Wojnar et al. J. Chem Phys. C 123, 19938 (August 2019) All Figures are adapted with permission from J. Chem Phys. C 123 19938. Copyright 2019 American Chemical Society.

 \checkmark A significant blue shift of the emission energy from CdSe:Cu/ZnSe QDs and (Zn,Cd)Se:Cu/ZnSe QWs with an increasing Cu content is observed. The maximum value of this shift amounts to 220meV for CdSe quantum dots and 90 meV for (Zn,Cd)Se quantum wells

 \checkmark An additional emission line spectrally below the excitonic emission

Time resolved photolumiescence

Figure 6. PL-decay times of the excitonic emission (green), Cu-related emission (red) in ZnCdSe:Cu QW with Cu content of 0.2% and Cu related emission from CdSe:Cu QDs with Cu content of 0.5% (black curve). Inset: close-up of PL at short delays. T = 5 K, excitation energy 405 nm.

undoped

Cu doped

exciton.

undoped

10

exciton

appears in the presence of copper within the structures. The energy of this Cu-related emission is strongly correlated to the energy of excitonic emission. The separation energy of these two emissions amounts in our case to 0.8 eV independently on their absolute values.

✓ According to the well-established mechanism for Cu-related emission which involves recombination of the conduction band electron with a hole strongly localized on a copper ion (Figure 1), we may conclude that the majority copper ions are in +1 oxidation ground state, which after optical excitation changes to +2 paramagnetic state.

 \checkmark It is possible that some copper ions might be also in +2 oxidation state without optical excitation and give rise to an small increase of the Zeeman splitting of the excitonic emission due to sp-d exchange interaction (Figure 5b).

Supported by National Centre of Science (Poland) grant UMO-2013/08/A/ST3/00297