Extremely Slow Spin Relaxation in Cu-doped Colloidal CdSe Quantum Dots

Ł. Kłopotowski¹, J. Mikulski¹, M. Szymura¹, M. Parlińska-Wojtan², R. Minikayev¹, T. Kazimierczuk³, J. Kossut¹

¹Institute of Physics, Polish Academy of Sciences, Warsaw, al. Lotników 32/64. 02-668 Warsaw, Poland
²Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Cracow, Poland
³Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland

spins due to dangling bonds

• efficient spin relaxation

Rodina and Efros *Nano Lett.* **15**, 4214 (2015).

□ hole trapping at the Cu dopant site

□ shrinkage of carrier wave functions

□ limited interaction with the surface

□ slow spin relaxation

The left by ΔE , produces polarization \tilde{A} \Box carrier interaction with spheroidal 10^{-3} phonon modes, $E_{ph} \approx 1 \text{ meV}$, $l \approx 2$

Oron et al. Phys. Rev. Lett. **102**, 177402 (2009).

0 0.8 T 0 0.6 T 0 0.4 T 0 0.2 T 2 4 6 8 10 Temperature (K)

2nd order surface phonon spin ____ relax. rate contribution contribution Orbach process $k_{spin}(B,T) = k_{surface} + A(B) n_B(E_{ph},T) (n_B(E_{ph} + \Delta E,T) + 1)$ phonon phonon related to 🖊 emission absorption mixing of spin states

□ the combined carrier interaction with dangling bond spins at the QD surface and with phonons determine the relaxation rates

□ shrinkage of the exciton wave function limits the interaction with dangling bond spins at the surface and, hence, suppresses spin relaxation

non-expontential PL decays due to contributions
 from different ion positions (electron-hole overlaps),
 QD morphology, and the vibronic structure

□ analogous conclusions expected for other copperand silver-doped II-VI and III-V QDs

□ comparison with **CuInS**₂ **QDs** will reveal the (contested!) nature of the luminescent state in these nanostructures

Klopotowski et al. J. Phys. Chem. C 124, 1042 (2020).

This work was supported by Polish National Science Center, Grant No. 2013/08/A/ST3/00297